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1 CMUC, Centre for Mathematics, University of Coimbra, Coimbra, Portugal
2 Departamento de Fisica Teorica II, Universidad Complutense, Madrid, Spain

E-mail: gcarlet@mat.uc.pt and manuel.manas@fis.ucm.es

Received 8 March 2010, in final form 29 June 2010
Published 12 October 2010
Online at stacks.iop.org/JPhysA/43/434011

Abstract
The Lax formulation of the multicomponent Kadomtsev–Petviashvili (KP) and
2D Toda hierarchies involves several implicit constraints. We show that, at
least in the 2-component case, it is possible to explicitly solve such constraints
and identify a set of free dependent variables for such hierarchies.

PACS number: 02.30.Ik
Mathematics Subject Classification: 37K10

1. Introduction

The Kadomtsev–Petviashvili (KP) and the two-dimensional Toda (2D Toda) hierarchies
are the most well-known hierarchies associated with 2+1 integrable systems. They both admit
the so-called multicomponent generalizations where the scalar Lax operators are replaced
by matrix-valued ones. The multicomponent KP hierarchy has been originally defined by
Date et al [6], while the multicomponent 2D Toda hierarchy was introduced in the seminal
paper [13] by Ueno and Takasaki. They have been further studied by several authors, see
e.g. [3, 9, 12]. These hierarchies have recently been the subject of much interest in relation
e.g. with multiple orthogonal polynomials [2], Brownian motion [1] and the Givental group
action on the space of Frobenius structures [8].

Differently from the scalar case, in the multicomponent hierarchies the matrix Lax
operators have to satisfy certain constraints. Let us look first at the usual KP hierarchy.
In this case one has a single scalar pseudo-differential Lax operator

LKP = ∂ + u1∂
−1 + u2∂

−2 + · · · .

The commuting flows of the hierarchy are given by the Lax equations

∂LKP

∂tn
=

[(
Ln

KP

)
+, LKP

]
,
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where (·)+ denotes the projection of a pseudo-differential operator to its differential part.
Formally, the Lax equations might be considered as an algebraic device to produce the
sequences of differential polynomials

Pk,n := (uk)tn ∈ AKP = C[{uk, u
′
k, u

′′
k , . . .}k!1]

in the dependent variables uk, k ! 1, such that the corresponding derivations

∂tn :=
∑

s!0,k!1

(
∂s
xPk,n

) ∂

∂u
(s)
k

on the algebra AKP commute.
In the simple case of the 2-component KP hierarchy, one has two pseudo-differential Lax

operators

L = ∂ + L1∂
−1 + · · · , C = E11 + C1∂

−1 + · · · ,
where the coefficients are 2 × 2 matrices. Let A′ be the algebra of differential polynomials
in the entries (Li)α,β , (Ci)α,β , α,β = 1, 2, of the matrix coefficients of L and C. As before,
the Lax equations (6) and (7) define sequences of elements in A′. However, in this case
the corresponding derivations do not commute unless an infinite set of differential identities
generated by the constraints

C2 = C, [L,C] = 0

is taken into account. In principle, it is not easy to establish if these identities can be used
to eliminate some variables or if it is possible to write the flows as derivations on a smaller
algebra A of differential polynomials without extra constraints.

In this work we show that, at least in the case of the 2-component KP and 2D Toda
hierarchies, it is possible to explicitly solve the constraints above and to identify a set of ‘free’
dependent variables.

In the case of the 2-component KP hierarchy the operator C turns out to be parametrized
in terms of its off-diagonal part CA, e.g. by the formula

C =
√

1 + 2CAE11

√
1 + 2CA,

while the operator L is parametrized by its diagonal part LD and by CA by the formula

L = LD − 1
2D

(√
1 − 4C2

A

)
,

where D is the derivation on the space of formal power series in CA defined by D(1) = 0 and
D(CA) = HLD .

Substituting these formulas in the Lax equations we obtain evolutionary-type equations
that only involve the variables in LD and CA. The Lax equations hence define sequence
elements in the algebra A of differential polynomials in the variables (Li)11, (Li)22, (Ci)12

and (Ci)21 such that the corresponding derivations on A commute, without any constraint.
Similar results are proved for the case of the 2-component 2D Toda hierarchy.
One of our main motivations for trying to construct a constraint-free Lax formulation

of these multicomponent hierarchies has been the recent construction [5] of an infinite-
dimensional Frobenius manifold associated with the dispersionless limit of the usual 2D
Toda hierarchy. To see if such a construction is also applicable to the case of multicomponent
hierarchies one would like to understand if the construction of a bi-Hamiltonian structure
(along the lines e.g. of [4]) is possible, and if the dispersionless limit for these hierarchies can
be understood in the usual way in terms of the symbol of a convenient Lax operator. We hope
that giving a formulation free of constraints at least in the 2-component case could be a first
step in this program.
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An example of 2-component hierarchy in which such program seems to be possible is
the case of the 2-component BKP hierarchy where a bi-Hamiltonian structure [14] has been
found which could possibly lead to an infinite-dimensional Frobenius manifold. However, in
this case, one exploits a reformulation [11] of the Lax representation of the hierarchy in terms
of two scalar pseudo-differential operators.

This paper is organized into two main sections. In section 2 we consider the 2-component
KP hierarchy. The definition of this hierarchy in terms of pseudo-differential operators is
recalled. We show that the constraints on the Lax operators can be solved explicitly, and
we identify the dependent variables of the hierarchy. In section 3 an analogous construction
is developed in the case of the 2-component 2D Toda hierarchy. In this case the algebra of
formal difference operators is considered and a similar solution of the constraints is given.
Section 4 is devoted to a summary and a discussion of further developments, in particular, to
the possibility of generalizing the present approach to the n-component case.

Notation. We use the following notations:

E11 =
(

1 0
0 0

)
, E22 =

(
0 0
0 1

)
, H =

(
1 0
0 −1

)
,

with the identity matrix denoted by 1.

Recall that the algebra of (formal) pseudo-differential operators is given by formal series
in the symbol ∂ as

n∑

k=−∞
ak∂

k,

with the algebra structure defined by

∂kf = f ∂k +
(

k

1

)
f ′∂k−1 + · · · .

We consider the coefficients ak as elements in the algebra of differential polynomials in
the dependent variables of the hierarchy. See e.g. [7] for further details on the formal setting.

Analogously, we define the formal difference operators as formal series in $, either of
the form

n∑

k=−∞
ak$

k or
∞∑

k=−m

ak$
k,

where the algebra structure is given by $k = ($kf )$k . In this case the coefficients ak are the
difference polynomials in the dependent variables of the hierarchy. See e.g. [10] for further
details.

2. The 2-component KP hierarchy

The usual Lax formulation of the 2-component KP hierarchy [3, 6, 9] is the following. One
considers the 2 × 2-matrix-valued pseudo-differential operators L, C(1) and C(2) of the form

L = ∂ + L1∂
−1 + L2∂

−2 + · · · , (1)

C(1) = E11 + C
(1)
1 ∂−1 + C

(1)
2 ∂−2 + · · · , (2)

C(2) = E22 + C
(2)
1 ∂−1 + C

(2)
2 ∂−2 + · · · , (3)

3
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which satisfy the constraints

C(i)C(j) = δijC
(i), i, j = 1, 2,

C(1) + C(2) = 1,

[L,C(i)] = 0, i = 1, 2.

Clearly in this case C(2) can be expressed in terms of C := C(1) and it is sufficient to consider
the constraints

C2 = C, (4)

[L,C] = 0. (5)

Two sets of flows ti,n for i = 1, 2 and n ! 0 are defined by the Lax equations

∂L

∂ti,n
= [(C(i)Ln)+, L], (6)

∂C(j)

∂ti,n
= [(C(i)Ln)+, C

(j)]. (7)

By standard arguments one proves that these flows commute and that they preserve the
constraints above.

The Lax equations (6) and (7), however, define commutative flows only if constraints (4)
and (5) are satisfied. We now show that it is possible to explicitly solve these constraints.

We start our analysis from the first constraint (4).

Proposition 1. A 2 × 2-matrix-valued pseudo-differential operator C of the form

C = E11 + C1∂
−1 + · · · (8)

satisfies the constraint C2 = C if and only if it can be written as

C = CA + CD with CD = 1
2

+
H

2

√
1 − 4C2

A, (9)

where CD and CA are the diagonal and off-diagonal parts of C, respectively.

Proof. If we split the constraint C2 = C in its diagonal and off-diagonal parts, we see that it
is equivalent to the system

C2
D + C2

A = CD, (10)

CACD + CDCA = CA. (11)

Equation (10) is written as
(
CD − 1

2

)2 = 1
4

(
1 − 4C2

A

)
,

which is solved, taking care of the correct leading term of CD − 1
2 = H

2 + · · ·, by formula (9).
Using the fact that H commutes with diagonal matrices and anti-commutes with off-diagonal
matrices, it is easy to check that formula (9) satisfies (11) too. "

The square root appearing in (9) is defined by the usual power-series expansion of√
1 − x = 1 − x

2 + · · ·. This power series gives a well-defined pseudo-differential operator
since CA is of order 1 in ∂−1; hence, only a finite number of terms in the power series contribute
to each given order in ∂−1.

4



J. Phys. A: Math. Theor. 43 (2010) 434011 G Carlet and M Mañas

Corollary 2. The parametrization (9) of C can be written explicitly as

C =
( 1

2 + 1
2

√
1 − 4aã a

ã 1
2 − 1

2

√
1 − 4ãa

)
,

where a and ã are the scalar pseudo-differential operators of the order O(∂−1):

a = a1∂
−1 + a2∂

−2 + a3∂
−3 + · · · , (12)

ã = ã1∂
−1 + ã2∂

−2 + ã3∂
−3 + · · · . (13)

We see at once that the entries of the matrix pseudo-differential operator C are expressed
as differential polynomials in the coefficients of a and ã. Recall that the square root of a scalar
pseudo-differential operator b = 1 + b1∂

−1 + · · · can be defined by the power series above or
equivalently as the unique operator

√
b = 1 + b̃1∂

−1 + · · · such that (
√

b)2 = b, where b̃k are
the differential polynomials in bl’s, i.e. b̃k ∈ C

[{
b

(n)
l

}]
.

Example 3. Expanding up to the third order in ∂−1 we obtain

C =
(

1 − a1ã1∂
−2 + (a1ã

′
1 − a2ã1 − a1ã2)∂

−3 a1∂
−1 + a2∂

−2 + a3∂
−3

ã1∂
−1 + ã2∂

−2 + ã3∂
−3 a1ã1∂

−2 − (ã1a
′
1 − ã2a1 − ã1a2)∂

−3

)
+ O(∂−4).

Remark 4. Using the fact that E11 = 1+H
2 and H anti-commutes with CA it is possible to

rewrite formula (9) in the interesting form

C =
√

1 + 2CAE11

√
1 + 2CA.

From this expression it is easy to check that the constraint C2 = C is satisfied and that C has
the correct leading term as in (8).

We now consider the second constraint (5). We first introduce

Definition 5. The operator D denotes the derivation on the space of formal power series in
the variable CA defined by D(1) = 0 and D(CA) = HLD , and LD and LA denote the diagonal
and off-diagonal parts of L, respectively,

and consider the following lemmas:

Lemma 6. Constraint (5) is equivalent to

[LA,CA] = −[LD,CD] (14)

[LA,CD] = −[LD,CA] (15)

holds.

Proof. Consider the diagonal and off-diagonal parts of [L,C] = 0. "

Lemma 7. The following identity holds

adHLD
= −adCA

◦ D (16)

when acting on power series in the variable CA.

Proof. It follows from the definition of the derivation D and the fact that adCA
is identically

zero when acting on such series; hence, 0 = D ◦ adCA
= adD(CA) + adCA

◦ D. "
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Lemma 8. Let C = C2 be as in proposition 1. Then constraint (14) is equivalent to the
identity

adLA
= − 1

2 adD(
√

1−4C2
A)

(17)

on power series in CA.

Proof. Indeed from (14) and (9) we have

adLA
CA = − 1

2 adHLD

(√
1 − 4C2

A

)
,

and using (16)

adLA
CA = 1

2 adCA
◦ D

(√
1 − 4C2

A

)

= − 1
2 adD(

√
1−4C2

A)
CA. "

Proposition 9. Let C = C2 be as in proposition 1. A 2×2-matrix-valued pseudo-differential
operator L of the form (1) commutes with C if and only if it has the form

L = LA + LD with LA = − 1
2D

(√
1 − 4C2

A

)
. (18)

Proof. Consider (15), which can be easily rewritten as

LAH

√
1 − 4C2

A +
H

2
adLA

(√
1 − 4C2

A

)
= −[LD,CA]. (19)

Using formula (17) we compute

adLA

(√
1 − 4C2

A

)
= − 1

2 adD(
√

1−4C2
A)

(√
1 − 4C2

A

)

= −D
(√

1 − 4C2
A

)√
1 − 4C2

A + 1
2D

(
1 − 4C2

A

)
.

Inserting this formula into (19) we obtain

LAH

√
1 − 4C2

A − H

2
D

(√
1 − 4C2

A

)√
1 − 4C2

A − HD
(
C2

A

)
= −[LD,CA].

The last two terms in the last expression cancel and, since the square root is an invertible
power series, we obtain (18).

On the other hand inserting (18) and (9) into (14) we see that this equation is satisfied if
and only if

adCA
◦ D

(√
1 − 4C2

A

)
= −adHLD

(√
1 − 4C2

A

)
,

which clearly follows from (16). Equations (18) and (9) also solve (15); indeed,

[LA,CD] = −1
4

[
D

(√
1 − 4C2

A

)
,H

√
1 − 4C2

A

]

= D
(
C2

A

)
H

= −[LD,CA].

The proposition is proved. "

Corollary 10. The matrix L has the following explicit parametrization:

L =
(

l 1
2

∑∞
n=0 cn

∑n
s=1(aã)s−1(al̃ − la)(ãa)n−s

− 1
2

∑∞
n=0 cn

∑n
s=1(ãa)s−1(ãl − l̃ã)(aã)n−s l̃

)

6
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where l and l̃ are the pseudo-differential operators of the form ∂ + O(∂−1):

l = ∂ + l1∂
−1 + l2∂

−2 + · · · ,
l̃ = ∂ + l̃1∂

−1 + l̃2∂
−2 + · · · ,

while a and ã are the off-diagonal entries of CA defined in (12) and (13), and the coefficients
cn are defined by the expansion

√
1 − 4x2 =

∑∞
n=0 cnx

2n.

Example 11. On expanding we obtain

L =
(

∂ + l1∂
−1 + l2∂

−2 a′
1∂

−1 + (a′
2 + a1(l1 − l̃1))∂

−2

−ã′
1∂

−1 − (ã′
2 + ã1(l̃1 − l1))∂

−2 ∂ + l̃1∂
−1 + l̃2∂

−2

)
+ O(∂−3).

Indeed L can be expressed only in terms of its diagonal coefficients, i.e. li and l̃i , and the
off-diagonal coefficients of C, i.e. ai and ãi .

Remark 12. The parametrization (18) can also be written in the form

L = −
√

1 + 2CAE11D(
√

1 − 2CA) − D(
√

1 + 2CA)E22

√
1 − 2CA

as one can easily check.

Note that the dependence of L on LD is linear, while L and C depend on CA nonlinearly.
Using the results obtained above we find the following formulation of the 2-component

KP hierarchy, which is free of constraints. The dependent variables are organized into two
2 × 2-matrix-valued pseudo-differential operators of the form

LD = ∂ + LD,1∂
−1 + LD,2∂

−2 + · · · ,
CA = CA,1∂

−1 + CA,2∂
−2 + · · · ,

where LD is diagonal and CA is off-diagonal. We now introduce

Definition 13. The differential operators B1,n and B2,n are given by

B1,n =
[(

1
2

+ CA +
H

2

√
1 − 4C2

A

) (
LD − 1

2
D

(√
1 − 4C2

A

))n]

+

B2,n =
[(

1
2

− CA − H

2

√
1 − 4C2

A

)(
LD − 1

2
D

(√
1 − 4C2

A

))n]

+

and (·)D and (·)A denote the projections on the diagonal and off the diagonal, respectively.

Proposition 14. The equations of the hierarchy are

∂LD

∂ti,n
= [(Bi,n)D, LD] − 1

2

[
(Bi,n)A,D

(√
1 − 4C2

A

)]
, (20)

∂CA

∂ti,n
= [(Bi,n)D, CA] +

1
2

[
(Bi,n)A,H

√
1 − 4C2

A

]
. (21)

Proof. This result is obtained by projection of equations (6) and (7) on the diagonal and off
the diagonal, respectively. "

7
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2.1. Examples and the Davey–Stewartson system

Recalling the formulas for

LA = −1
2
D

(√
1 − 4C2

A

)
and CD = 1

2
+

H

2

√
1 − 4C2

A,

we get

LA = LA,1∂
−1 + LA,2∂

−2 + LA,3∂
−3 + · · · ,

with the first three coefficients given by

LA,1 = H(CA,1)x,

LA,2 = H((CA,2)x + [LD,1, CA,1]),

LA,3 = H
(
(CA,3)x + [LD,1, CA,2] + [LD,2, CA,1] − LD,1(CA,1)x + CA,1(LD,1)x

+ (CA,1)xC
2
A,1 + C2

A,1(CA,1)x − CA,1(CA,1)xCA,1
)
.

We also have

CD = E11 + CD,2∂
−2 + CD,3∂

−3 + · · · ,

with

CD,2 = −HC2
A,1,

CD,3 = −H(CA,1CA,2 + CA,2CA,1 − CA,1(CA,1)x).

To find the explicit form of the flows we proceed with the computation of the expressions

(B1,1)D = E11∂, (B1,1)A = CA,1,

(B1,2)D = E22∂, (B1,2)A = −CA,1,

(B2,1)D = E11∂
2 + 2LD,1E11 − HC2

A,1, (B2,1)A = CA,1∂ + 2E11(CA,1)x + CA,2,

(B2,2)D = E22∂
2 + 2LD,1E22 + HC2

A,1, (B2,2)A = −CA,1∂ − 2E22(CA,1)x − CA,2.

Inserting into the Lax equations (20) and (21) we obtain, for the first couple of times
t1,1 and t1,2, the following equations for LD,1 and LD,2:

∂1,1LD,1 = (E11LD,1 − H(CA,1)
2)x, (22)

∂1,2LD,1 = (E22LD,1 + H(CA,1)
2)x, (23)

∂1,1LD,2 = E11(LD,2)x + H(((CA,1)x)
2 − CA,1(CA,2)x − (CA,2)xCA,1), (24)

∂1,2LD,2 = E22LD,2,x − H(((CA,1)x)
2 − CA,1(CA,2)x − (CA,2)xCA,1), (25)

while for CA,1 and CA,2 we have

∂1,1CA,1 = E11(CA,1)x + [E11, CA,2], (26)

∂1,2CA,1 = E22(CA,1)x + [E22, CA,2], (27)

∂1,1CA,2 = E11(CA,2)x + [E11, CA,3] + 2H(CA,1)
3, (28)

∂1,2CA,2 = E22(CA,2)x + [E11, CA,3] − 2H(CA,1)
3. (29)

Combining some equations of the hierarchy we can obtain an example of the 2+1 equation
related to this hierarchy. Indeed, from the equations for CA,1 and CA,2 we can derive CA,2 and

8
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CA,3 in terms of CA,1 and its x, t1,i derivatives, i = 1, 2. For that aim it is enough to observe
that ad2

Eii
= id, i = 1, 2, over the off-diagonal matrices. Hence,

CA,2 = [E11, (∂1,1 − E11∂)CA,1] = [E22, (∂1,2 − E22∂)CA,1]

CA,3 = [E11, (∂1,1 − E11∂)
2CA,1] − (CA,1)

3 = [E22, (∂1,2 − E22∂)
2CA,1] + (CA,1)

3.

We now write the t2,i-flows, i = 1, 2, but only for LD,1,

∂2,1LD,1 = E11(LD,1,xx + 2LD,2,x) − H(CA,1(CA,1)xx − ((CA,1)x)
2 + (CA,1CA,2)x

−2[E11(CA,1)x, E22(CA,1)x] + CA,1[LD,1, (CA,1)x] + [LD,1, A1,x]CA,1),

∂2,2LD,1 = E22(LD,1,xx + 2LD,2,x) + H(CA,1(CA,1)xx − ((CA,1)x)
2 + (CA,1CA,2)x

− 2[E22(CA,1)x, E11(CA,1)x] + CA,1[LD,1, (CA,1)x] + [LD,1, A1,x]CA,1),

and CA,1,

∂2,1CA,1 = E11(A1,xx + 2(CA,2)x) + [E11, CA,3] + 2[LD,1E11, CA,1],

∂2,2CA,1 = E22(A1,xx + 2(CA,1)x) + [E22, CA,3] + 2[LD,1E22, CA,1].

Substituting (26)–(29), (22) and (23) into the above equations results into

∂2,1CA,1 = H
(
∂2

1,1CA,1 − 2(CA,1)
3) + 2[LD,1E11, CA,1],

∂2,2CA,1 = −H
(
∂2

1,2CA,1 − 2(CA,1)
3) + 2[LD,1E22, CA,1],

(E11∂1,1 + E22∂1,2)(LD,1) = ((CA,1)
2)x.

Now, if we write

LD,1 =
(

U 0
0 V

)
, CA,1 =

(
0 p

q 0

)
,

we get the Davey–Stewartson system

∂2,1p = ∂2
1,1p − 2p2q + 2Up,

∂2,1q = −∂2
1,1q − 2pq2 − 2Uq,

∂2,2p = −∂2
1,1p + 2p2q − 2Vp,

∂2,2q = ∂2
1,1q + 2pq2 + 2V q,

∂1,1U = ∂1,2V = (pq)x.

3. The 2-component 2D Toda hierarchy

In this section we show that a similar analysis can be performed for the 2-component 2D Toda
hierarchy. In this case one has to deal with matrix-valued formal difference operators.

The 2-component 2D Toda hierarchy [12, 13] is defined in terms of the formal Lax
difference operators L, L̄, C(i), C̄(i) for i = 1, 2 of the form

L = $ + L0 + L−1$
−1 + · · · , (30)

L̄ = L̄−1$
−1 + L̄0 + L̄1$ + · · · , (31)

C(i) = Eii + C
(i)
1 $−1 + · · · ,

C̄(i) = C̄
(i)
0 + C̄

(i)
1 $ + · · · ,

9
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where L̄−1 is invertible and C̄
(i)
0 is similar to Eii. These operators are required to satisfy the

following constraints:

C(i)C(j) = δijC
(i), i, j = 1, 2,

C̄(i)C̄(j) = δij C̄
(i), i, j = 1, 2,

C(1) + C(2) = 1 = C̄(1) + C̄(2),

[L,C(i)] = 0 = [L̄, C̄(i)], i = 1, 2,

which in this case reduce to

C2 = C, [L,C] = 0, (32)

C̄2 = C̄, [L̄, C̄] = 0, (33)

where we have denoted C := C(1) and C̄ := C̄(1).
Four sequences of flows ti,n, t̄i,n for i = 1, 2 and n ! 0 are defined by

∂

∂ti,n
· = [(C(i)Ln)+, ·], (34)

∂

∂ t̄i,n
· = [(C̄(i)L̄n)−, ·], (35)

where · can be any of the Lax operators L, L̄, C(i), C̄(i) for i = 1, 2. Again by standard
arguments these flows are seen to commute and preserve the constraints above. In particular,
it is easy to see that the matrices C̄

(j)
0 evolve like

∂C̄
(j)
0

∂ti,n
=

[
Res(C(i)Ln), C̄

(j)
0

]
,

∂C̄
(j)
0

∂ t̄i,n
=

[
−Res(C̄(i)L̄n), C̄

(j)
0

]
;

hence, the condition of similarity of C̄
(i)
0 and Eii is preserved.

The solution to constraints (32) for the operators L and C is completely analogous to that
for the 2-component KP hierarchy. We summarize the statement here.

Proposition 15. (a) A 2 × 2-matrix-valued formal difference operator C of the form

C = E11 + C1$
−1 + · · ·

satisfies the constraint C2 = C if and only if it can be written as

C = CA + CD with CD = 1
2

+
H

2

√
1 − 4C2

A,

where CD and CA are the diagonal and off-diagonal parts of C, respectively.
(b) Let C = C2 be as above. A 2 × 2-matrix-valued formal difference operator L of the

form (30) commutes with C if and only if it has the form

L = LA + LD with LA = − 1
2D

(√
1 − 4C2

A

)
,

where D is the derivation on the space of formal power series in the variable CA defined by
D(1) = 0 and D(CA) = HLD , and LD and LA denote the diagonal and off-diagonal parts of
L, respectively.

10
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To solve constraints (33) for the operators L̄ and C̄ we need to take care of the fact that
their leading orders are not constant matrices.

The leading order C̄0 of the operator C̄ is required to be similar to E11 and to satisfy
C̄2

0 = C̄0; such requirements are equivalent to the following constraints on entries of C̄0:

C̄0 =
(

a b

c d

)
,

{
a + d = 1,

ad = bc.

For simplicity in the following we consider the generic case where a (= 0, 1, and we
parametrize C̄0 as a function of b = eu and c = ev as follows:

C̄0 =
(

w eu

ev 1 − w

)
, (36)

where w = a is a fixed choice of a root of the quadratic equation above, i.e.

w = 1
2 (1 ±

√
1 − 4eu+v).

Denote

φ := C̄0 − E22 =
(

w eu

ev −w

)
.

Lemma 16. The matrix φ is invertible, with φ−1 = 1
w
φ and

C̄0 = φE11φ
−1.

Proof. Clearly

detφ = −w (= 0

and

C̄0φ = C̄0(C̄0 − E22) = C̄0E11 = (C̄0 − E22)E11 = φE11. "

Using the matrix φ to dress C̄ we obtain the parametrization of the first constraint in (33).

Proposition 17. A 2 × 2-matrix-valued formal difference operator C̄ of the form

C̄ = C̄0 + C̄1$ + · · · ,
where C̄0 is of the form (36) and such that it satisfies the constraint C̄2 = C̄, can be
parametrized in terms of eu, ev and of an off-diagonal operator ĈA of the form

ĈA = ĈA,1$ + ĈA,2$
2 + · · ·

by the formula

C̄ =
√

1 + 2C̃C̄0

√
1 + 2C̃,

or equivalently as

C̄ = C̃ + 1
2 +

(
C̄0 − 1

2

)√
1 − 4C̃2,

where C̃ := (C̄0 − E22)ĈA
1
w
(C̄0 − E22).

Proof. The operator Ĉ := φ−1C̄φ clearly satisfies Ĉ2 = Ĉ and has the leading term E11.
Hence one proves as before that

Ĉ = ĈA +
1
2

+
H

2

√
1 − 4Ĉ2

A

11
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or, as in remark 4,

Ĉ =
√

1 + 2ĈAE11

√
1 + 2ĈA.

Dressing with φ one obtains the desired result. "
Now consider the leading term of L̄ which must satisfy

L̄−1$
−1C̄0 = C̄0L̄−1$

−1,

and equivalently

[φ−1L̄−1$
−1φ, E11] = 0.

Hence L̄−1 must be of the form

L̄−1 = φD($−1φ−1),

where D is a diagonal matrix.
Clearly the operator L̂ := φ−1L̄φ commutes with Ĉ and has a diagonal leading term

D$−1. One can easily show, as in the previous cases, that L̂ has to be of the form

L̂ = L̂D − 1
2DHL̂D

(√
1 − 4Ĉ2

A

)
.

Dressing with φ one obtains the required result.

Proposition 18. Let C̄ = C̄2 be as in the previous proposition. A 2×2-matrix-valued formal
difference operator L̄ of the form (31) that commutes with C̄ can be parametrized by C̄, i.e.
by eu, ev and ĈA, and by a diagonal formal difference operator of the form

L̂D = D$−1 + L̂D,0 + · · ·
by the formula

L̄ = L̃ − 1
2 D̂(

√
1 − 4C̃2),

where L̃ := (C̄0 − E22)L̂D
1
w
(C̄0 − E22) and D̂ is the derivation on the space of formal power

series in C̃ defined by D̂(1) = 0 and D̂(C̃) = (C̄0 − E22)HL̂D
1
w
(C̄0 − E22).

To conclude, note that the dependent variables of the 2-component 2D Toda hierarchy are
the entries of CA, LD, ĈA, L̂D and the variables eu and ev that parametrize the leading term C̄0.

4. Concluding remarks

In this paper we have shown that it is possible to explicitly solve the constraints in the
Lax definition of the 2-component KP and 2D Toda hierarchies. It turns out that the KP
Lax operators are parametrized by simple formulas such as (9) and (18), and that analogous
formulas hold in the 2D Toda case. This allows us to identify a set of ‘free’ dependent variables
for such hierarchies, which are given in the KP case by the off-diagonal part of the operator C
and by the diagonal part of the operator L.

We hope that this result will help in the study of reductions, in the construction of
bi-Hamiltonian structures, and will also clarify the problem of the existence of the
dispersionless limit, especially at the level of the Lax equations.

We plan to consider the n-component case in a subsequent publication. In this regard
note that, while the present approach seems to be largely dependent on the properties of 2 × 2
matrices, it is indeed possible to generalize straightforwardly some results, e.g. proposition 1,
to the case of n × n matrices, by splitting the matrices in four blocks and considering the
decomposition in diagonal and off-diagonal blocks. We hope that this property could be
exploited to solve also the other constraints that are present in the n-component theory.
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