Exercises

1

1. Let $\phi_{i}: U_{i} \rightarrow V_{i}, i=1,2$ be two complex charts on a topological space X with $U_{1} \cap U_{2} \neq \varnothing$. Assume $\phi_{2} \circ \phi_{1}^{-1}: \phi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \phi_{2}\left(U_{1} \cap U_{2}\right)$ is holomorphic. Show that $\phi_{2} \circ \phi_{1}^{-1}$ is a biholomorphic map.

2

2. (a) Let $\mathbb{C}_{\infty}:=\mathbb{C} \cup\{\infty\}$ and τ the usual topology of \mathbb{C}. Define the topology τ_{∞} on \mathbb{C}_{∞} by taking the union of τ with the collection of sets of the form $V \cup\{\infty\}$, where V is the complement of a compact subset of \mathbb{C}. Show that \mathbb{C} is not compact, but \mathbb{C}_{∞} is compact.
(b) Let \mathbb{P}^{1} be the set of complex one-dimensional subspaces of \mathbb{C}^{2}. Denote by $[v: w]$ the subspace of \mathbb{C}^{2} generated by the non-zero element (v, w) of \mathbb{C}^{2}. Show that the map $\mathbb{P}^{1} \rightarrow \mathbb{C}_{\infty}$ that sends $[v: w], w \neq 0$ to v / w and $[v: 0]$ to ∞ is a bijection.
(c) Let $S^{2}=\left\{(x, y, w) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+w^{2}=1\right\}$ be the two-sphere in \mathbb{R}^{3}. Check that the map $\phi: S^{2} \rightarrow \mathbb{C}_{\infty}$ that sends $(x, y, w) \neq(0,0,1)$ to $\frac{x+i y}{1-w}$, and $(0,0,1)$ to ∞ is a bijection.
(d) Define a complex atlas for each of the previous examples. Show that the bijections are biholomorphic maps.

3

3. Let X be a Riemann surface. Show that the set $\mathcal{O}(X)$ of holomorphic functions on X is a \mathbb{C}-algebra. Conclude that this is also true for any open subset U of X (consider the connected components of U).

5

4. Let f be a holomorphic map between a Riemann surface X and \mathbb{C} seen as a Riemann surface. Show that f is a holomorphic map in the usual sense.
5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be holomorphic maps between Riemann surfaces. Show that $g \circ f: X \rightarrow Z$ is a holomorphic map.
6. Let $f: X \rightarrow Y$ a continuous map between Riemann surfaces. Let the pull back of a function ϕ on V open subset of Y be the function $f^{*}(\phi)$ on $f^{-1}(V)$ given by the composition $\phi \circ f$.
(a) Show that f is holomorphic iff for all open subsets V in Y and all $\phi \in \mathcal{O}(V)$ we have that $f^{*}(\phi) \in \mathcal{O}\left(f^{-1}(V)\right)$.
(b) Show that if f is holomorphic, f^{*} is a homomorphism of \mathbb{C}-algebras.
7. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be holomorphic maps between Riemann surfaces. Show that $(g \circ f)^{*}=f^{*} \circ g^{*}$.

6

8. Show that a holomorphic function $f: X \rightarrow Y, X, Y$ Riemann surfaces, X compact can assume a value $q \in Y$ only a finite number of times.

7

9. Show that a meromorphic function on a compact Riemann surface has a finite number of zeros and poles.
10. Show that any rational function, i.e., the ratio of two polynomials $P(z) / Q(z)$, $Q \not \equiv 0$, defines a meromorphic function on the Riemann sphere.
11. Show that if f is a meromorphic function on a Riemann surface $X, g \not \equiv 0$, then $1 / f \in \mathcal{M}(X)$, by using Riemann's removable singularity theorem.
12. Let $a, b, c, d \in \mathbb{C}$ with $a d-b c \neq 0$. Show that the linear fractional transformation

$$
f(z)=\frac{a z+b}{c z+d},
$$

defines a meromorphic function on \mathbb{P}^{1}. Show that the corresponding map $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is biholomorphic.
13. Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a biholomorphic map. Let z be the usual coordinate on $\mathbb{C} \subset \mathbb{P}^{1}$. Show that $f(z)$ is given by a linear fractional transformation.

8

14. Let f be a rational function seen as a meromorphic map on the Riemann sphere. Show that f can be written as

$$
f(z)=c \prod_{i}\left(z-z_{i}\right)^{e_{i}}
$$

for some integers e_{i} and distinct z_{i}. Show that if $e_{i}>0$ then z_{i} is a zero of order ${ }^{1} e_{i}$ and if $e_{i}<0$, then z_{i} is a pole of order $-e_{i}$. Compute the order of the pole or zero at ∞. Show that the sum of all orders of zeros and all orders of poles is zero.

9

15. Let X be a compact Riemann surface and $f \in \mathcal{M}(X), f$ non-constant. Show that f must have at least a zero and a pole on X.

[^0]16. Let Γ be the lattice in \mathbb{C} generated by w_{1}, w_{2} complex numbers linearly independent over \mathbb{R}, i.e.,
$$
\Gamma=w_{1} \mathbb{Z}+w_{2} \mathbb{Z}
$$

Let $\alpha \in \mathbb{C}$ non-zero and Γ^{\prime} the lattice defined by

$$
\Gamma^{\prime}=\alpha w_{1} \mathbb{Z}+\alpha w_{2} \mathbb{Z}
$$

Show that the map $\phi: \mathbb{C} \rightarrow \mathbb{C}$ which multiplies a complex number by α descends to a biholomorphic map between the associated tori:

$$
\phi: \frac{\mathbb{C}}{\Gamma} \rightarrow \frac{\mathbb{C}}{\Gamma^{\prime}}
$$

17. Show that any complex torus $\frac{\mathbb{C}}{\Gamma}$ is isomorphic to a complex torus $\frac{\mathbb{C}}{\mathbb{Z}+\tau \mathbb{Z}}$, where τ is a complex number with strictly positive imaginary part.

11

18. Show that a holomorphic map between compact Riemann surfaces is an isomorphism iff it has degree one.
19. Let $f \in \mathcal{M}(X)$ non-constant, X a compact Riemann surface. Show that

$$
\sum_{p \in X} \operatorname{ord}_{f}(p)=0
$$

20. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two non-constant holomorphic maps between compact Riemann surfaces. Show that, for $p \in X$, $\operatorname{val}_{g \circ f}(p)=$ $\operatorname{val}_{f}(p) \operatorname{val}_{g}(f(p))$.
21. Let $C \subset \mathbb{C}^{2}$ be a plane algebraic curve defined by a polynomial $f(z, w)$. Suppose at the points $p_{1}, \ldots, p_{n} \in C$ are singular, i.e., $(\partial f / \partial z, \partial f / \partial w)=$ $(0,0)$ at each p_{i}. Show that $C /\left\{p_{1}, \ldots, p_{n}\right\}$ is a Riemann surface.
22. Show that the algebraic curve with equation $w^{2}=h(z)$ is smooth if and only if the polynomial $h(z)$ as distinct roots.
23. Let C be an plane algebraic curve defined by a polynomial $f(z, w)$ of degree 2, i.e., it is an affine conic. Suppose C has a singular point. For simplicity let $f(z, w)=w^{2}-h(z)$. Show that the polynomial f factors as the product of two linear polynomials, so C is the union of two lines.
24. Let C be a smooth place algebraic curve in \mathbb{C}^{2} defined by $f(z, w)=0$. Show that the map $\pi: C \rightarrow \mathbb{C}$ defined by $\pi(z, w)=z$ is a holomorphic map between Riemann surfaces. Show that $p \in C$ is a ramification point, i.e. $\operatorname{val}_{\pi}(p)>1$, iff $\partial f / \partial w$ vanishes at p.
25. (a) By drawing pictures convince yourself that gluing the corresponding sides of the 8 -gon

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}
$$

one gets a sphere S with 2 handles, i.e., a 2 -manifold of genus 2 .
(b) By dividing the 8 -gon in triangles compute the Euler number of S and check for this example the formula relating the Euler number and the genus of a surface.
(c) Produce a different triangulation of the same 8-gon and show that Euler number does not change.
26. Produce two different triangulations T and T^{\prime} of the 8 -gon. Superimpose the two triangulations make it a triangulation $T^{\prime \prime}$ by adding vertices and edges. Check that $T^{\prime \prime}$ is a refinement of both T and T^{\prime} (show that both can be made into $T^{\prime \prime}$ by sequences of elementary refinements).
27. Show that a biholomorphic map between open subsets of the complex plane preserves the orientation.
28. Let

$$
f(z)=z^{3} /\left(1-z^{2}\right)
$$

define a meromorphic function on the Riemann sphere. Find all points p such that $\operatorname{ord}_{p}(f) \neq 0$. Find the degree of f, as map from \mathbb{P}^{1} to \mathbb{P}^{1}. Find all ramification points and branch points. Verify Riemann-Hurwitz formula.
29. Same as above for the meromorphic function

$$
f(z)=4 z^{2} \frac{(z-1)^{2}}{(2 z-1)^{2}}
$$

30. Let $f: X \rightarrow Y$ a non-constant holomorphic map between compact Riemann surfaces.
(a) Show that if $Y \simeq \mathbb{P}^{1}$ and $\operatorname{deg} f>1$, then f is ramified.
(b) Show that if both X and Y have genus one, then f is unramified.
(c) Show that g_{X} is always bigger than or equal to g_{Y}.
(d) Show that if $g_{X}=g_{Y} \geqslant 2$, then f is an isomorphism.

[^0]: ${ }^{1}$ Recall that the order of a meromorphic function f on the Riemann surface X at a pole or at a zero $p \in X$ is given by the valency at p of f seen as an holomorphic map between X and \mathbb{P}^{1}.

