Exercises

1

1. Let $\phi_i : U_i \to V_i$, i = 1, 2 be two complex charts on a topological space X with $U_1 \cap U_2 \neq \emptyset$. Assume $\phi_2 \circ \phi_1^{-1} : \phi_1(U_1 \cap U_2) \to \phi_2(U_1 \cap U_2)$ is holomorphic. Show that $\phi_2 \circ \phi_1^{-1}$ is a biholomorphic map.

$\mathbf{2}$

- 2. (a) Let $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$ and τ the usual topology of \mathbb{C} . Define the topology τ_{∞} on \mathbb{C}_{∞} by taking the union of τ with the collection of sets of the form $V \cup \{\infty\}$, where V is the complement of a compact subset of \mathbb{C} . Show that \mathbb{C} is not compact, but \mathbb{C}_{∞} is compact.
 - (b) Let \mathbb{P}^1 be the set of complex one-dimensional subspaces of \mathbb{C}^2 . Denote by [v:w] the subspace of \mathbb{C}^2 generated by the non-zero element (v,w)of \mathbb{C}^2 . Show that the map $\mathbb{P}^1 \to \mathbb{C}_\infty$ that sends $[v:w], w \neq 0$ to v/wand [v:0] to ∞ is a bijection.
 - (c) Let $S^2 = \{(x, y, w) \in \mathbb{R}^3 | x^2 + y^2 + w^2 = 1\}$ be the two-sphere in \mathbb{R}^3 . Check that the map $\phi : S^2 \to \mathbb{C}_{\infty}$ that sends $(x, y, w) \neq (0, 0, 1)$ to $\frac{x+iy}{1-w}$, and (0, 0, 1) to ∞ is a bijection.
 - (d) Define a complex atlas for each of the previous examples. Show that the bijections are biholomorphic maps.

3

3. Let X be a Riemann surface. Show that the set $\mathcal{O}(X)$ of holomorphic functions on X is a \mathbb{C} -algebra. Conclude that this is also true for any open subset U of X (consider the connected components of U).

$\mathbf{5}$

- 4. Let f be a holomorphic map between a Riemann surface X and \mathbb{C} seen as a Riemann surface. Show that f is a holomorphic map in the usual sense.
- 5. Let $f: X \to Y$ and $g: Y \to Z$ be holomorphic maps between Riemann surfaces. Show that $g \circ f: X \to Z$ is a holomorphic map.
- 6. Let $f : X \to Y$ a continuous map between Riemann surfaces. Let the *pull back* of a function ϕ on V open subset of Y be the function $f^*(\phi)$ on $f^{-1}(V)$ given by the composition $\phi \circ f$.
 - (a) Show that f is holomorphic iff for all open subsets V in Y and all $\phi \in \mathcal{O}(V)$ we have that $f^*(\phi) \in \mathcal{O}(f^{-1}(V))$.
 - (b) Show that if f is holomorphic, f^* is a homomorphism of $\mathbb{C}\text{-algebras}.$
- 7. Let $f: X \to Y$ and $g: Y \to Z$ be holomorphic maps between Riemann surfaces. Show that $(g \circ f)^* = f^* \circ g^*$.

8. Show that a holomorphic function $f : X \to Y, X, Y$ Riemann surfaces, X compact can assume a value $q \in Y$ only a finite number of times.

$\mathbf{7}$

- 9. Show that a meromorphic function on a compact Riemann surface has a finite number of zeros and poles.
- 10. Show that any rational function, i.e., the ratio of two polynomials P(z)/Q(z), $Q \neq 0$, defines a meromorphic function on the Riemann sphere.
- 11. Show that if f is a meromorphic function on a Riemann surface $X, g \neq 0$, then $1/f \in \mathcal{M}(X)$, by using Riemann's removable singularity theorem.
- 12. Let $a, b, c, d \in \mathbb{C}$ with $ad bc \neq 0$. Show that the linear fractional transformation

$$f(z) = \frac{az+b}{cz+d}$$

defines a meromorphic function on \mathbb{P}^1 . Show that the corresponding map $f: \mathbb{P}^1 \to \mathbb{P}^1$ is biholomorphic.

13. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a biholomorphic map. Let z be the usual coordinate on $\mathbb{C} \subset \mathbb{P}^1$. Show that f(z) is given by a linear fractional transformation.

8

14. Let f be a rational function seen as a meromorphic map on the Riemann sphere. Show that f can be written as

$$f(z) = c \prod_{i} (z - z_i)^{e_i}$$

for some integers e_i and distinct z_i . Show that if $e_i > 0$ then z_i is a zero of order¹ e_i and if $e_i < 0$, then z_i is a pole of order $-e_i$. Compute the order of the pole or zero at ∞ . Show that the sum of all orders of zeros and all orders of poles is zero.

9

15. Let X be a compact Riemann surface and $f \in \mathcal{M}(X)$, f non-constant. Show that f must have at least a zero and a pole on X.

¹Recall that the *order* of a meromorphic function f on the Riemann surface X at a pole or at a zero $p \in X$ is given by the valency at p of f seen as an holomorphic map between X and \mathbb{P}^1 .

16. Let Γ be the lattice in \mathbb{C} generated by w_1 , w_2 complex numbers linearly independent over \mathbb{R} , i.e.,

$$\Gamma = w_1 \mathbb{Z} + w_2 \mathbb{Z}.$$

Let $\alpha \in \mathbb{C}$ non-zero and Γ' the lattice defined by

$$\Gamma' = \alpha w_1 \mathbb{Z} + \alpha w_2 \mathbb{Z}.$$

Show that the map $\phi : \mathbb{C} \to \mathbb{C}$ which multiplies a complex number by α descends to a biholomorphic map between the associated tori:

$$\phi: \frac{\mathbb{C}}{\Gamma} \to \frac{\mathbb{C}}{\Gamma'}.$$

17. Show that any complex torus $\frac{\mathbb{C}}{\Gamma}$ is isomorphic to a complex torus $\frac{\mathbb{C}}{\mathbb{Z}+\tau\mathbb{Z}}$, where τ is a complex number with strictly positive imaginary part.

11

- 18. Show that a holomorphic map between compact Riemann surfaces is an isomorphism iff it has degree one.
- 19. Let $f \in \mathcal{M}(X)$ non-constant, X a compact Riemann surface. Show that

$$\sum_{p \in X} \operatorname{ord}_f(p) = 0$$

20. Let $f: X \to Y$ and $g: Y \to Z$ be two non-constant holomorphic maps between compact Riemann surfaces. Show that, for $p \in X$, $\operatorname{val}_{g \circ f}(p) = \operatorname{val}_f(p)\operatorname{val}_g(f(p))$.

12

- 21. Let $C \subset \mathbb{C}^2$ be a plane algebraic curve defined by a polynomial f(z, w). Suppose at the points $p_1, \ldots, p_n \in C$ are singular, i.e., $(\partial f/\partial z, \partial f/\partial w) = (0, 0)$ at each p_i . Show that $C/\{p_1, \ldots, p_n\}$ is a Riemann surface.
- 22. Show that the algebraic curve with equation $w^2 = h(z)$ is smooth if and only if the polynomial h(z) as distinct roots.
- 23. Let C be an plane algebraic curve defined by a polynomial f(z, w) of degree 2, i.e., it is an *affine conic*. Suppose C has a singular point. For simplicity let $f(z, w) = w^2 h(z)$. Show that the polynomial f factors as the product of two linear polynomials, so C is the union of two lines.
- 24. Let C be a smooth place algebraic curve in \mathbb{C}^2 defined by f(z, w) = 0. Show that the map $\pi : C \to \mathbb{C}$ defined by $\pi(z, w) = z$ is a holomorphic map between Riemann surfaces. Show that $p \in C$ is a ramification point, i.e. $\operatorname{val}_{\pi}(p) > 1$, iff $\partial f / \partial w$ vanishes at p.

25. (a) By drawing pictures convince yourself that gluing the corresponding sides of the 8-gon

 $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}$

one gets a sphere S with 2 handles, i.e., a 2-manifold of genus 2.

- (b) By dividing the 8-gon in triangles compute the Euler number of S and check for this example the formula relating the Euler number and the genus of a surface.
- (c) Produce a different triangulation of the same 8-gon and show that Euler number does not change.
- 26. Produce two different triangulations T and T' of the 8-gon. Superimpose the two triangulations make it a triangulation T'' by adding vertices and edges. Check that T'' is a refinement of both T and T' (show that both can be made into T'' by sequences of elementary refinements).
- 27. Show that a biholomorphic map between open subsets of the complex plane preserves the orientation.
- 28. Let

$$f(z) = z^3/(1-z^2)$$

define a meromorphic function on the Riemann sphere. Find all points p such that $\operatorname{ord}_p(f) \neq 0$. Find the degree of f, as map from \mathbb{P}^1 to \mathbb{P}^1 . Find all ramification points and branch points. Verify Riemann-Hurwitz formula.

29. Same as above for the meromorphic function

$$f(z) = 4z^2 \frac{(z-1)^2}{(2z-1)^2}.$$

- 30. Let $f:X\to Y$ a non-constant holomorphic map between compact Riemann surfaces.
 - (a) Show that if $Y \simeq \mathbb{P}^1$ and deg f > 1, then f is ramified.
 - (b) Show that if both X and Y have genus one, then f is unramified.
 - (c) Show that g_X is always bigger than or equal to g_Y .
 - (d) Show that if $g_X = g_Y \ge 2$, then f is an isomorphism.

 $\mathbf{13}$