Corrigé du partiel du 22 octobre 2020.

1. Le polynôme P(x) est divisible par x et par x-1, puisque 0 et 1 sont des racines. En faisant la division euclidienne on trouve

$$P(x) = x(x-1)(x^2 - x + 1).$$

Le polynôme $x^2 - x + 1$ n'a pas de racines réelles, donc les seules deux racines réelles sont 0 et 1.

2. En éliminant la valeur absolue on trouve que la solution est donnée par l'union des solutions des deux systèmes suivants :

$$\begin{cases} x^2 - x \ge 0 \\ x^2 - x > 2, \end{cases} \begin{cases} x^2 - x < 0 \\ -x^2 + x > 2. \end{cases}$$

L'ensemble des solutions du premier système est $]-\infty, -1[\cup]2, +]\infty[$ et le deuxième système n'a pas de solution. Donc l'ensemble des solutions de l'inéquation est :

$$]-\infty,-1[\cup]2,+\infty[.$$

3. La racine carrée de y est définie pour $y \ge 0$. Donc il faut imposer $\cos(x) \ge 0$ et $x \ne 1$. On trouve le domaine de définition suivant :

$$\bigcup_{k\in\mathbb{Z}}[-\frac{\pi}{2}+2\pi k,\frac{\pi}{2}+2\pi k]\setminus\{1\}.$$

- **4.** Pour tout M>0 il existe $\delta>0$ tel que si $x\in]\frac{\pi}{2},\frac{\pi}{2}+\delta[$ alors $\arctan(x)<-M.$ (Évidemment cette limite est égale à $\arctan(\pi/2)$ et pas à $-\infty$, mais la définition de l'expression $\lim_{x\to\pi/2^+}\arctan(x)=-\infty$ reste la même.)
- 5. Calculer les limites suivantes :

a.
$$\lim_{x \to +\infty} \frac{x^3 - 5x^2}{(x^2 - 1)(3x + 7)} = \frac{1}{3}$$
,

b.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin(\cos(x))}{\cos(x)} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1$$
,

c.
$$\lim_{x\to 0} \frac{\ln(\cos(x))}{x} = \left[\frac{0}{0}\right] = \lim_{x\to 0} \frac{(\ln(\cos(x)))'}{(x)'} = \lim_{x\to 0} \frac{-\sin(x)}{\cos(x)} = 0.$$

6.

a.
$$\mathbb{R} \setminus \{\pm 1\}$$
,

b.
$$\lim_{x \to 1^{\pm}} h(x) = \pm \infty$$
, $\lim_{x \to -1^{\pm}} h(x) = \mp \infty$, $\lim_{x \to \pm \infty} h(x) = 1$.

c.
$$h'(x) = \frac{-2x}{(x^2-1)^2}$$
. Le seul point critique est $x=0$.

- **d.** h'(x) > 0 ssi x < 0 et $x \ne -1$; h'(x) < 0 ssi x > 0 et $x \ne 1$. Donc h(x) est strictement décroissante si x > 0 et strictement croissante si x < 0. Il y a un maximum local en x = 0 où h(0) = 0.
- 7. Soient x et y les deux côtés du rectangle. Alors $A=xy,\,P=2x+2y.$
 - **a.** Si A est fixée, alors $y = \frac{A}{x}$ et $P = 2x + \frac{2A}{x}$. P'(x) = 0 pour $x = \sqrt{A}$ donc $y = \sqrt{A} = x$. Ce point critique est un minimum car $P''(\sqrt{A}) > 0$.
 - **b.** Si P est fixé, alors $y = \frac{P}{2} x$ et $A = x\frac{P}{2} x^2$. A'(x) = 0 pour $x = \frac{P}{4}$ donc $y = \frac{P}{4} = x$. Ce point critique est un maximum car $A''(\frac{P}{4}) < 0$.