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1 Introduction: ODEs and PDEs

Most theories and models that describe quantitatively our world are based on
differential equations.

Differential equations are equations that contain the derivatives of an un-
known function y with respect to one or more independent variables.

We distinguish between ordinary differential equations (ODEs) and partial
differential equations (PDEs).

GAP 1

1.1 Examples of ODEs and PDEs in physics, chemistry,
biology, economics, ...

1.1.1 ODEs

Important examples of first order ODEs:

• Law of radioactive decay

GAP 2

• Reaction speed equation (for a second order reactant)

GAP 3
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• Torricelli’s law

E. Torricelli

GAP 4

• Newton’s law of cooling

I. Newton

GAP 5

• Malthus (1798) law of population dynamics, i.e., exponential behaviour

T. R.
Malthus

GAP 6

• Logistic equation (P. Verhulst, 1845), the simplest population growth
model with bounded growth

GAP 7

Exercise 1. Check that the general solution to the logistic equation is
given by

P (t) =
r

k + (r/P0 − k)e−rt
(1)

and observe that in the limit t→ +∞ the the population approaches the
maximum sustainable population r/k.

2



In all these examples physical laws are translated in differential equations.
By solving the related initial value problem one can make predictions.

The initial value problem for a first order ODE

GAP 8

in general determines the solution y(x) uniquely.
Up to 1950 the logistic model has a remarkable predictive power of US pop-

ulation:

3



Second order ODEs include most examples from mechanics, because of New-
ton’s law F = ma. Examples:

• Spring + mass + dashpot (shock absorber) system

GAP 9

• The series RLC circuit

GAP 10
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1.1.2 PDEs

Examples of important PDEs:

• Wave equation

GAP 11

• Maxwell’s equations (electrodynamics, optics, electric circuits, ... )

James Clerk
Maxwell

∇ · E =
ρ

ε 0
(2)

∇ ·B = 0 (3)

∇× E = −∂B
∂t

(4)

∇×B = µ0(J + ε0
∂E

∂t
). (5)

GAP 12
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In free space (ρ = 0 = J), these imply that the components of E and B
satisfy the wave equation:

GAP 13

Hence the propagating speed of electromagnetic radiation (i.e. light) is

c =
1

√
µ0ε0

∼ 3 · 108m/s. (6)

• Einstein field equations (general relativity): ten coupled nonlinear PDEs

Albert
Einstein

for the metric tensor gαβ (describing the geometry of space-time) in terms
of the stress-energy tensor Tαβ (describing the matter/energy content of
space-time).

GAP 14

• Schrödinger’s equation (quantum mechanics): linear PDE describing the

Erwin
Schrödinger

evolution in time of the quantum state (given by the wavefunction ψ) of
a particle of mass m in an electric field with potential V :

GAP 15
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• Diffusion (or heat) equation (thermodynamics, diffusion processes)

GAP 16

• Laplace equation: steady states (i.e., time-independent) of the heat equa-
tion

GAP 17

• An example of PDE in chemistry: the reaction-diffusion equation models
the concentration of substances distributed in space under the effect of
chemical reactions and diffusion:

GAP 18

• In finance the Black-Scholes equation (1973) models the price of a deriva-
tive V as a function of the stock price S and time t:

GAP 19
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• Korteweg - de Vries equation (KdV) models shallow water nonlinear waves.
It is exactly solvable!

GAP 20
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2 Ordinary differential equations

2.1 Basic concepts

A differential equation is an equation involving an unknown function y and its
derivatives with respect to independent variables usually denoted x, t, ....

If the unknown function depends on only one independent variable we have
an ordinary differential equation. If the unknown function depends on more
than one independent variable then we have a partial differential equation. We
further distinguish between linear and nonlinear differential equations.

The order of a differential equation is the order of the highest derivative
appearing in it.

Example 1. The following are differential equations for the unknown function
y. Which ones are ODEs and which PDEs? What is their order? Which are
linear and which – nonlinear? What are the independent variables ?

dy

dx
= 5x+ 3 (1)

GAP 1

ey
d2y

dx2
+ 2

(
dy

dx

)2

= 1 (2)

GAP 2

d3y

dx3
+ (sinx)

d2y

dx2
+ 5xy = 1 (3)

GAP 3

∂y

∂t
− k ∂

2y

∂x2
= 0 (4)

GAP 4

∂y

∂t
+

1

2
σ2s2 ∂

2y

∂s2
+ rs

∂y

∂s
+ ry = 0 (5)

GAP 5
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2.2 First order differential equations

A first order ordinary differential equation can be written (in standard form) as

y′ = f(x, y). (6)

A solution is a function y(x) defined on an interval I ⊂ R such that when
substituted in (6), it becomes an identity for each x ∈ I. In general one has
infinitely many solutions to equation (6), depending on a constant C. Such
family is called general solution.

If the function f depends only on x the problem of finding the solution of (6)
becomes the problem of finding the primitive (antiderivative) of f(x).

GAP 6

In some cases the solution can be found explicitly: consider the equation
y′ = ay for a constant a

GAP 7

Solutions may not be defined on the whole x-axis: consider the equation
y′ = y2

GAP 8

Real solutions might not exist at all: consider the equation (y′)2 + y2 = −1

GAP 9
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We can interpret geometrically equation (6) as a slope field or direction field

GAP 10

For example, for the equation y′ = 2y we have:

Given an equation of the type (6), one faces two problems: 1) the existence
and uniqueness (under certain extra assumptions) of the solutions, 2) finding
such solutions and establishing their properties.

Let’s first consider the problem of existence and uniqueness of solutions.

2.2.1 The problem of existence and uniqueness

In general we expect on ODE to have an infinite family of solutions. To specify
uniquely a solution we thus need additional requirements, for example initial
conditions.

11



The initial value problem or Cauchy problem is the following:

GAP 11

Let R be a rectangle containing the point (x0, y0) e.g.

R = {(x, y) ∈ R2 s.t. |x− x0| < a, |y − y0| < b for some a, b > 0}. (7)

Suppose both the function f(x, y) and ∂f
∂y (x, y) are continuous in R.

Under these conditions, the Cauchy theorem states that, for some open in-
terval I containing x0, there exists a unique solution y(x) of ODE (6) defined
on the interval I and such that y(x0) = y0.

If the regularity conditions are not satisfied, uniqueness is not guaranteed.
For example:

GAP 12

Exercise 2. Determine whether the Cauchy theorem guarantees existence and
uniqueness of the solution on a small interval for the following initial value
problems:

y′ = 2x2y2, y(1) = −1, (8)

y′ = x ln y, y(1) = 1, (9)

y′ = 3
√
y, y(0) = 1. (10)

If we know the general solution of an ODE, the Cauchy problem is solved
by imposing the initial conditions and finding the corresponding value of the
constant C. For example to solve the Cauchy problem

GAP 13
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Exercise 3. Solve the initial value problems:

y′ = y2, y(1) = 2, (11)

y′ = 2x+ 3, y(1) = 2. (12)

First order ODEs can also more generally be given in implicit form as

F (x, y, y′) = 0. (13)

For example:

GAP 14

Now we want to consider some methods for finding explicit solutions.

2.2.2 Separable first order differential equations

Example 4. Consider the differential equation

y′ = xe−y. (14)

One can check that the general solution is given by

y = log

(
1

2
x2 + c

)
. (15)

Indeed:

GAP 15
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How to find this general solution ? We can rewrite the equation in separated
variables form:

GAP 16

A first order ODE in one variable (6) is separable or has its variables separated
if can be written in the form

dy

dx
=
A(x)

B(y)
(16)

or equivalently
A(x)dx = B(y)dy. (17)

The general solution is then obtained by integration:

GAP 17

Example 5. The general solution of

y′ =
x2 + 2

y
(18)

is obtained by separating variables:

GAP 18

Exercise 6. Solve the initial value problems:

y′ = −6xy, y(0) = 7, (19)

y′ =
4− 2x

3y2 − 5
, y(1) = 3. (20)

14



2.2.3 Exact first order differential equations

Example 7. Consider now the differential equation

y′ =
x+ sin y

2y − x cos y
. (21)

We can check that the solution in implicit form is given by

1

2
x2 + x sin y − y2 = c (22)

for any constant c. Indeed:

GAP 19

Such type of implicit solutions can be found when the equation is exact, i.e.
can be written in the form

A(x, y)dx+B(x, y)dy = 0 (23)

with functions A and B that satisfy the exactness condition

GAP 20 .

In such case there exists a function g(x, y) such that

GAP 21 .

The general solution of the equation is then given in implicit form by

g(x, y) = c (24)

for any constant c.

Example 8. In the example above A and B are given by

GAP 22
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which satisfy the exactness condition since

GAP 23

Let’s find the function g in this case

GAP 24

Hence we obtain the implicit solution given above.

Exercise 9. Find the general solution of

(4y + 3x2 − 3xy2)y′ = −6xy + y3. (25)

Exercise 10. Show that the exactness condition implies the existence of the
function g. Hint: Integrate the first equation for g, obtaining g up to an arbitrary
function f(y); then write the second equation for g; show that it determines f
only when the exactness condition holds.

Exercise 11. Show that (24) gives a solution to (23).

In some cases equations of the form (23) which are not exact can be trans-
formed into an exact equation by a choice of an integrating factor i.e. a function
I(x, y) such that

I(x, y)[A(x, y)dx+B(x, y)dy] = 0 (26)

is an exact equation. This equivalent form of the equation can be solved implic-
itly as above. In general, integrating factors are difficult to uncover.

Exercise 12. Show that the equation

(y2 − y)dx+ xdy = 0 (27)

is not exact. Show that I = 1/y2 is an integrating factor.

The method of integrating factor is important in the solution of linear first
order differential equations.

2.2.4 Linear first order differential equations

A first order ODE is called linear when f(x, y) is linear in y, i.e. has the form

y′ + p(x)y = q(x). (28)

This can be rewritten as

GAP 25
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This is not exact, because

GAP 26

However it becomes exact by multiplying by the integrating factor

I(x) = e
∫
p(x)dx (29)

as one can check:

GAP 27

Then, to find the general solution of a first order linear ODE one first com-
putes the integrating factor I(x) and then, following the method described be-
fore for exact ODEs, obtains a function g s.t.

GAP 28

The general solution is given implicitly by

g(x, y) = c (30)

for a constant c.

17



Example 13. Solve the ODE

y′ + y = e−x (31)

GAP 29

Exercise 14. Solve the initial value problem

y′ − y =
11

8
e−x/3, y(0) = −1. (32)

Exercise 15. Find the general solution of

(x2 + 1)y′ + 3xy = 6x. (33)

One can also obtain the following formula for the general solution of (28)

y = e−
∫
p(x)dx

∫
q(x)e

∫
p(x)dxdx. (34)

Exercise 16. By computing explicitly g prove the general formula (34).

18



2.3 Second order differential equations

A second order ODE in implicit form

G(x, y, y′, y′′) = 0 (35)

or in standard form:
y′′ = f(x, y, y′). (36)

For theoretical purposes it is useful to remark right away that a second-order
ODE (36) can be regarded as a special case of a system of two first-order ODE’s
by introducing a new variable v = y′:

y′ = v (37)

v′ = f(x, y, v) (38)

A general system of n first-order ODE’s for n unknown functions y1, . . . , yn
can be written in vector form as

~y′ = ~F (x, ~y), (39)

where ~y = (y1, . . . , yn), and ~F : R × Rn → Rn is a function. The Cauchy
problem in this case requires specifying the initial values of all components of ~y,
~y(x0) = ~y0, and the existence and uniqueness theorem is exactly analogous to
the single ODE case, with y replaced by ~y. In particular, the for a second-order
ODE one needs to fix not only the value y0 of the function y(x) at the point x0

but also the value y′0 of the derivative y′(x) at x0:

GAP 30

In some cases the system (37)-(38) decouples, and we are reduced to solving
two separate first order ODEs, for instance:

• If the equation does not depend on y directly but only through its deriva-
tives, i.e. y′′ = f(x, y′), so:

GAP 31
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Example 17. Solve y′′ = x(y′)2 for y(0) = 1, y′(0) = −2.

GAP 32

• If the equation does not depend on x directly, i.e. y′′ = f(y, y′). In this
case one introduces a new variable v = y′ and regards v as a function of y
rather than of x. Notice that one has:

GAP 33

and so we can rewrite

GAP 34

Example 18. Solve y′′ = y−1(y′)2.

GAP 35
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2.3.1 Linear second order ODEs

A linear second order ODE (i.e. G is linear in y, y′, y′′) can be written as

GAP 36

where the coefficient functions A(x), B(x), C(x) and F (x) are defined and con-
tinuous on some (possibly unbounded) interval I. If A(x) 6= 0 for each x ∈ I,
we can divide it out and put the equation in the form

GAP 37

Example 19.

GAP 38

2.3.2 Existence and uniqueness

The existence and uniqueness theorem for second order linear ODEs states that:
given functions p(x), q(x) and f(x) continuous on some open interval I contain-
ing the point x0, then, for any two numbers y0 and y′0, there is a unique solution
y(x) to the initial value problem y′′ + p(x)y′ + q(x)y = f(x),

y(x0) = y0,
y′(x0) = y′0.

(40)

The solution is defined on the whole interval I.
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2.3.3 Principle of superposition

If the function f(x) vanishes we say the equation is homogeneous, otherwise it
is inhomogeneous.

For a homogeneous linear ODE

y′′ + p(x)y′ + q(x)y = 0 (41)

we have the important principle of superposition: if y1 and y2 are solutions of
the homogeneous equation (41), then c1y1 + c2y2 is also a solution for any two
constants c1 and c2.

Let’s prove it:

GAP 39

Example 20. Check that the equation

y′′ − 2y′ + y = 0 (42)

has y1 = ex and y2 = xex as solutions. Solve the i.v.p. y(0) = 3, y′(0) = 1.

GAP 40
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2.3.4 Fundamental set of solutions and the Wronskian

Suppose we have two solutions y1(x), y2(x) of the homogeneous equation (41).
Then by the principle of superposition y = c1y1 + c2y2 is a solution, for any
two constants c1, c2. Suppose we want to find the solution corresponding to the
initial values

y(x0) = y0, y′(x0) = y′0. (43)

GAP 41

Given two functions f and g, the Wronskian of f and g is the determinant
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Two functions y1, y2 defined on an open interval I are linearly independent
if

c1y1 + c2y2 ≡ 0 (44)

implies that both constants c1 and c2 are zero. Two linearly independent solu-
tions form a fundamental set of solutions.

We have the following result (which generalizes to higher order equations):
if y1 and y2 are two solutions to the homogeneous equation (41) on an interval
I and W is their Wronskian, then:

(a) if y1, y2 are linearly dependent, then W ≡ 0 on I,

(b) if y1, y2 are linearly independent, then W (x) 6= 0 for any x ∈ I.
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Let us prove statement (a):

GAP 43

and statement (b):

GAP 44

Note that a fundamental set of solutions always exists:

GAP 45
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Finally we can state the theorem about the general solution of the homoge-
neous equation (41): let y1 and y2 form a fundamental set of solutions (i.e. they
are linearly independent); then for any solution y of (41) there exist constants
c1 and c2 s.t.

y = c1y1 + c2y2. (45)

Proof:

GAP 46

The Wronskian W of two solutions of a homogeneous linear second order
ODE (41) satisfies the equation

W ′ = −pW. (46)

Proof:

GAP 47

Exercise 21. Use this fact to prove Abel’s formula:

W (x) = W (x0)e
−

∫ x
x0
p(ξ)dξ

. (47)
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2.3.5 Reduction of order

If we know a solution y1 of a second order linear ODE, we can find a second one
by looking for a solution y2 of the form y2 = νy1. Substituting in the original
equation we can find an equation for ν which reduces to a first order ODE.

Example 22. Knowing that y1 = t−1 is a solution of

2t2y′′ + ty′ − 3y = 0 (48)

find another solution y2.
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Exercise 23. Knowing that y1 = t is a solution of

t2y′′ + 2ty′ − 2y = 0 (49)

find another solution y2.

2.3.6 Inhomogeneous equations

Let yp be a solution of the inhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) (50)

for coefficients continuous on an interval I. Then any solution y of such inho-
mogeneous equation is given by

y = yh + yp, (51)

where yh is a solution of the associated homogeneous equation.
Proof:

GAP 49
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Example 24. Find the solution of the equation

y′′ + 4y = 12x (52)

such that y(0) = 5 and y′(0) = 7.

GAP 50

2.3.7 Linear second order ODE with constant coefficients

Let’s consider the homogeneous linear second order ODE

ay′′ + by′ + cy = 0 (53)

where a, b and c are (real) constants.
Let’s try under what conditions eλx is a solution of such equation
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The associated characteristic equation is

GAP 52

The form of the general solution depends on sign of the discriminant ∆ =
b2 − 4ac.

• If ∆ > 0 the characteristic polynomial has distinct real roots λ1, λ2. In
this case the general solution is

GAP 53
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as we can easily see by computing the Wronskian

GAP 54

Example 25. Solve 2y′′ − 7y′ + 3y = 0.
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Exercise 26. Solve y′′ + 2y′ = 0.

• If ∆ = 0 there are two equal real roots λ. In this case the general solution is

GAP 56

Example 27. Solve y′′ + 2y′ + y = 0 for y(0) = 5, y′(0) = −3.

GAP 57

Exercise 28. Solve y′′ − 4y′ + 4y = 0.
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• If ∆ < 0 then there are two complex-conjugate roots λ1 = λ , λ2 = λ̄. The
general real solution is obtained by imposing the reality condition y = ȳ
on

y = k1e
λx + k2e

λ̄x. (54)
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We get the general solution

y = eax(c1 cos bx+ c2 sin bx) (55)

where λ = a+ ib.

Example 29. Solve y′′ − 4y′ + 5y = 0 for y(0) = 1, y′(0) = 5.
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Exercise 30. Solve y′′ − 6y′ + 16y = 0.

Exercise 31. Solve the Euler’s equation

Ax2u′′(x) +Bxu′(x) + cu(x) = 0. (56)

Hint: change the independent variable to t = lnx.
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2.3.8 Methods for finding particular solutions to inhomogeneous
equations

To find the general solution of a inhomogeneous linear ODE

y′′ + py′ + qy = f (57)

is sufficient to know the general solution of the associated homogeneous equation
and a particular solution of the inhomogeneous equation.

There are two methods to find a particular solution of an inhomogeneous
ODE.

Method of undetermined coefficients

One guesses a particular solution of the inhomogeneous ODE, starting from
the form of f , leaving the coefficients undetermined. Then substitutes in the
ODE to find the coefficients.

Example 32. Find a particular solution of y′′ − 4y′ − 12y = 3e5t.
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Method of variation of parameters

Let y1 and y2 be a set of fundamental solutions for the homogeneous ODE.
Then one looks for a particular solution of the inhomogeneous ODE of the form

y(x) = u1(x)y1(x) + u2(x)y2(x). (58)

Assuming
u′1y1 + u′2y2 = 0 (59)

one finds that u1 and u2 must satisfy

u′1y
′
1 + u′2y

′
2 = f. (60)

The last two equations can be solved for u1 and u2 obtaining

u1 = −
∫
y2f

W
dx, u2 =

∫
y1f

W
dx (61)

where W is the Wronskian of y1, y2. If one can perform these integrals, one
thus obtains a particular solution by formula (58).
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Example 33. Find a particular solutions of y′′ + 9y = 3 tan 3x.

GAP 61

Exercise 34. Prove (60).

Exercise 35. Prove (61).

31



3 Partial differential equations - introduction

3.1 Basic concepts

Reading: Section 1.1 of [S]. Review A.1, A.2, A.3. Homework: all exercises
from Section 1.1.

Outline: definition of PDE, order of a PDE, basic examples, linear operators,
homogeneous and inhomogeneous linear equations, general solution to a PDE
depends on arbitrary functions. Review of some material from calculus and
linear algebra.

3.2 Linear first order PDEs

Reading: Section 1.2 of [S]. Homework: all exercises from Section 1.2.

Outline: the constant coefficient equation (geometric and coordinate method),
the variable coefficient equation, characteristic curves.

3.2.1 Derivation of simple transport equation

Reading: Example 1 of Section 1.3 of [S].
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4 Wave equation

4.1 The vibrating string

Reading: Example 2 of Section 1.3 of [S]. Homework: exercise 1 of Section 1.3.

4.2 Initial value problem on the line

Reading: Section 2.1 of [S]. Homework: example 2 of Section 2.1 (sketch the
solution at different times t); exercises 1, 2, 5, 7.

Outline: general solution, characteristic coordinates, initial value problem,
d’Alembert formula.

Exercise 1. Rewrite the wave equation in the coordinates

ξ = x+ ct, η = x− ct (1)

and find its general solution. Show by switching back to the original variables
x, t that the general solution is

u(x, t) = f(x+ ct) + g(x− ct) (2)

for arbitrary functions f and g.

Exercise 2. Prove that the plane wave

u(x, t) = Aei(kx+ωt) (3)

satisfies the wave equation if and only if the real parameters k (wave number)
and ω (frequency) satisfy the dispersion relation

ω = ±ck. (4)

Show that u(x, t) is periodic both in x, with period 2π/k, and in t, with period
2π/ω.

4.3 Causality, energy and well-posedness

Reading: Sections 2.2, 1.4, 1.5 of [S]. Homework: exercises 1, 2, 3 of Section
2.2.

Outline: dependence and influence domains, causality, Huygens principle,
propagation of singularities, energy conservation, uniqueness from energy con-
servation, well-posed problems, stability of initial value problem.
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4.4 Wave equation on the half-line

Optional reading: Section 3.2 (pages 61-62) of [S]. Homework: exercises below.

Outline: Dirichlet and Neumann boundary conditions, odd and even func-
tion, wave equation on the half-line with Dirichlet and Neumann boundary
conditions, reflection of waves.

Exercise 3. Fill in the following gaps:

Consider the initial value problem for the wave equation on the half-line with
Dirichlet boundary condition at x = 0

GAP 1

This problem can be reduced to the problem on the line by using odd func-
tions. A function f(x) on the real line is odd if

GAP 2

i.e. if its graph is symmetric w.r.t. the origin. If f is an odd function, then
f(0) = 0.

First, extend the functions φ, ψ to odd functions φodd, ψodd on the real line

GAP 3

Second, solve the i.v.p. on the line by D’Alembert formula

GAP 4

The solution v(x, t) is odd, indeed:

GAP 5

hence satisfies the boundary condition for all t.
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Finally, the solution to the original b.v.p. is given by restriction of the solu-
tion v(x, t) to the half-line.

We can now write the solution in terms of the initial data φ(x), ψ(x) (rather
than in terms of their odd extensions). For t > 0, x > ct the solution is

GAP 6

For t > 0, 0 < x < ct the solution is

GAP 7

Exercise 4. Sketch the domain of dependence.

Exercise 5. Sketch the behaviour of a triangular initial profile (pinched string)
in the case of Dirichlet boundary condition at x = 0.

Exercise 6. Solve the i.v.p. on the half-line with Neumann boundary conditions
at x = 0

ux(0, t) = 0, for all t (5)

using even functions. Sketch the dependence and influence domains. Sketch the
behaviour of a triangular initial profile.

Exercise 7. (Ex. 5 p. 66 of [S]) Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0,
u(x, 0) ≡ 1, ut(x, 0) ≡ 0. Find the location of the singularity of the solution.
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4.5 Wave equation on an interval and separation of vari-
ables

Reading: Sections 4.1, 4.2 of [S], skipping the parts on the diffusion equation
that will be considered later. Homework: exercises 4, 5 of Section 4.1, exercise
2 of Section 4.2.

Outline: separated solutions, Dirichlet and Neumann boundary conditions
on the interval, eigenvalue problems, sine and cosine Fourier series.
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4.6 Periodic problem for the wave equation

A function f(x) is periodic of period L if f(x+ L) = f(x) for any x. Consider
the initial value problem for the wave equation on the line with periodic initial
data, i.e. both φ(x) and ψ(x) are periodic functions of period 2l.

Exercise 8. Show that the solution u(x, t) is periodic of period 2l in x, for any
t. (Use uniqueness of the i.v.p. for the wave equation on the line. Alternatively
use the d’Alembert formula).

Let us begin by looking for separated solutions, i.e. of the form

u(x, t) = X(x)T (t) (6)

where X(x) is a periodic function of period 2l. As before we get the following
equations for X and T

−X ′′ = λX, T ′′ + λc2T = 0. (7)

Exercise 9. Solve the eigenvalue problem for X, finding all the eigenvalues λn
and the corresponding eigenfunctions Xn.

One finds that the eigenvalues are

λn =
(πn
l

)2

, n = 0, 1, 2, . . . (8)

To the eigenvalue λ0 = 0 corresponds the eigenfunction X0 = 1, and to each
eigenvalue λn, n > 1 correspond two linearly independent eigenfunctions

cos
πnx

l
, sin

πnx

l
. (9)

Exercise 10. For each eigenvalue, find the corresponding general solution of
the equation for T . Write down the separated solutions un to the wave equation
with periodic boundary conditions.

Combining the separated solutions we obtain the following general solution

u(x, t) =
A0

2
+
C0

2
t+

∑
n>1

cos
πnc

l
t
(
An cos

πn

l
x+Bn sin

πn

l
x
)

(10)

+
∑
n>1

sin
πnc

l
t
(
Cn cos

πn

l
x+Dn sin

πn

l
x
)
. (11)

The initial conditions φ(x) and ψ(x) are expressed as full Fourier series.
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5 Fourier series

5.1 Classical Fourier series

Reading: Sections 5.1 and 5.2 of [S]. Examples 1 - 6 and exercises 2, 3, 9 from
Section 5.1; exercises 2, 3, 4, 5, 6, 11, 17 from Section 5.2.

Outline: sine, cosine and full Fourier series, orthogonality and coefficients
formulas, solution of the wave equation initial value problems with Dirichlet,
Neumann and periodic boundary conditions. Complex form of the Fourier series.

5.2 Orthogonality and general Fourier series

Reading: Sections 5.3 of [S]. Exercises 2, 3, 5, 9, 10 from Section 5.3.

Outline: Green’s second identity, symmetric boundary conditions, complex
eigenvalues, negative eigenvalues.

5.3 Convergence theorems

Reading: Sections 5.4, 5.5 (p.136-9) of [S].

Outline: pointwise, uniform and mean square convergence, convergence theo-
rems for classical and general Fourier series, least-square approximation, Bessel’s
inequality, Parseval’s equality, proof of pointwise convergence.
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5.4 Incomplete notes

5.4.1 Different types of convergence for series of functions

Definition of pointwise, uniform and L2 convergence of a series of functions over
an interval [a, b]. See [S] p.126.

5.4.2 Convergence theorems

- pointwise convergence
- standard convergence theorem for complex F. s. [D]

5.4.3 Some L2 theory

Inner product and norm on L2. Consider two C-valued functions on the
interval (a, b). The Hermitian inner product is

GAP 1

The L2-norm is

GAP 2

We use ‖f − g‖2 as a measure of the “distance” of two functions f , g on
(a, b).

Least-square approximation theorem. Consider a sequenceXn, n = 1, 2, . . .
of orthogonal functions i.e.

GAP 3

Let f(x) be a function on (a, b) with ‖f‖ < ∞ and N > 0 a fixed integer.
Recall that the Fourier coefficients An of f(x) w.r.t. the functions Xn are de-
fined by

GAP 4

The least-square approximation theorem states that
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Theorem. For any choice of complex numbers c1, . . . , cN one has

GAP 5

This result can be interpreted as follows: the combination of X1, . . . , XN

that best approximates in L2-sense the function f(x) is that given by using the
Fourier coefficients An.

Proof. For simplicity let us prove the theorem in the case of real valued Xn,
orthogonal w.r.t. the real version of the inner product

GAP 6

and assume that the Xn are normalized of length 1

‖Xn‖2 = 1. (1)

Consider the L2-norm squared

GAP 7

rewrite it using the inner product

GAP 8

and then, using orthogonality, observe that it can be written as

GAP 9

This quantity clearly has minimum for cn = An.

Bessel’s inequality. If we choose cn = An in the previous proof, we get
Bessel’s inequality
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Parseval’s equality.

5.4.4 Proof of pointwise convergence

We follow Section 5.5 of [S].
Let f be a continuous function on R of period 2π. The (classical) full Fourier

series in this case is

1

2
A0 +

∞∑
n=1

(An cosnx+Bn sinnx) , (2)

where

An =
1

π

∫ π

−π
f(y) cosny dy, n > 0, (3)

Bn =
1

π

∫ π

−π
f(y) sinny dy, n > 1. (4)

We want to prove that

Theorem. Let f ∈ C1(R) of period 2π. Then the Fourier series (2) converges
pointwise to f(x).

Proof. Let SN be the Nth partial sum

SN =
1

2
A0 +

N∑
n=1

(An cosnx+Bn sinnx) . (5)

Let us first rewrite SN (x)− f(x) in a more convenient form.

Lemma. We have

SN (x)− f(x) =
1

2π

∫ π

−π
g(θ) sin((N +

1

2
)θ) dθ (6)

for

g(θ) =
f(x+ θ)− f(x)

sin(θ/2)
. (7)

This lemma is proved by simple manipulations, using only the assumption
of periodicity of f(x), see p.137-9 of [S].

We need to prove that for any fixed x, the integral in (6) tends to zero as
N →∞.

First observe that
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Lemma. The functions

φN (θ) = sin((N +
1

2
)θ). (8)

are orthogonal with respect to the inner product

(f, g) =

∫ π

−π
f(θ)g(θ) dθ. (9)

Then Bessel’s inequality implies

1

π

∞∑
N=1

|(g, φN )|2 6 ‖g‖22, (10)

where we have used the fact that ‖φN‖22 = π. So, if ‖g‖2 is finite, the series on
the left-hand side converges, and we have that

|SN (x)− f(x)|2 =
1

4π
|(g, φN )|2 → 0 (11)

for N →∞. It remains to check that g has finite L2 norm. But since

lim
θ→0

g(θ) = 2f ′(θ), (12)

g(θ) is a continuous function on (−π, π), and the integral of |g|2 is finite, i.e.
‖g‖2 <∞.

42



6 Heat equation

6.1 Physical derivation of the heat equation

Reading: See Example 4 of Section 1.3 of [S] for the derivation of the diffusion
equation, Example 5 for the heat equation.

Let u(x, t) be the temperature at the point x and at time t of a rod, assumed
insulated except at the ends. The amount of heat ∆H in the small interval
(y, y + ∆y) is proportional to the temperature

∆H = cρu(y, t)∆y

where c is the specific heat and ρ is the linear mass density. The heat in the
interval (x0, x) is obtained by integration:

H =

∫ x

x0

cρu(y, t) dy.

Fourier’s law states that the heat flows from hot to cold regions with the rate
proportional to the gradient of the temperature. By our assumption this can
only occur at the ends, so we have:

dH

dt
=

∫ x

x0

cρut(y, t) dy = κux(x)− κux(x0),

where κ is a proportionality constant (the heat conductivity). By differentiating
w.r.t. x we obtain the heat equation:

ut = kuxx, (1)

for an unknown function u(x, t), where k = κ
cρ .

Exercise 1. To which physical configurations correspond the boundary condi-
tions of Dirichlet or Neumann type ?

6.2 Maximum principle, uniqueness and stability

Reading: section 2.3 of [S]. Exercises 1, 2, 4, 6.

Outline: maximum and minimum (weak and strong) principles, proof of
weak maximum principle, well-posedness of initial value problem on the interval
with Dirichlet b.c., uniqueness and stability in the uniform sense.

6.2.1 Strong and weak maximum and minimum principles

Consider a solution u(x, t) to the heat equation

ut = kuxx (2)

on a rectangle R given by 0 6 x 6 l, 0 6 t 6 T and denote by R′ the initial line
t = 0 and the sides of the rectangle x = 0, x = l.

The strong maximum principle states that, if u(x, t) is not constant, the
maximum M of u(x, t) is assumed only on R′ (and in particular u(x, t) < M for
all (x, t) ∈ R \R′).
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The weak maximum principle states that the maximum M of u(x, t) is as-
sumed on R′ (hence u(x, t) 6M for (x, t) ∈ R).

The strong and weak minimum principles are completely analogous.

Exercise 2. State the strong and weak minimum principles.

Exercise 3. Prove the minimum principle for a solution u(x, t) of the heat
equation on a rectangle R by applying the maximum principle to −u(x, t).

6.2.2 Proof of the weak maximum principle

We only give the proof of the weak maximum principle. See section 2.3 of [S].

Let u(x, t) be a solution of the heat equation on the rectangle R given by
0 6 x 6 l, 0 6 t 6 T and denote by R′ the initial line t = 0 and the sides of the
rectangle x = 0, x = l.

Let M be the maximum of u(x, t) on R′.
Let us consider a perturbation v(x, t) of the solution u(x, t) by adding to it

εx2, where ε > 0 is a small positive constant

v(x, t) = u(x, t) + εx2. (3)

A simple computation shows that v(x, t) satisfies the diffusion inequality at all
points in R

vt − kvxx = −2kε < 0. (4)

Let us now show that v(x, t) cannot have a maximum in R \R′:

• Suppose v(x, t) has a maximum at the interior point (x0, t0). Then vt = 0
and vxx 6 0 at (x0, t0), and this contradicts the diffusion inequality.

• Suppose v(x, t) has a maximum at the top edge point (x0, T ). At such
point the t derivative has to be nonnegative, because

vt(x0, T ) = lim
δ→0−

v(x0, T )− v(x0, T − δ)
δ

> 0. (5)

Then vt > 0 and vxx 6 0 at (x0, T ), and this contradicts the diffusion
inequality.

Since v(x, t) must have a maximum in R, but it cannot be in R \R′, then it
can only be on R′.

On R′ we have
v(x, t) 6 u(x, t) + εl2 6M + εl2, (6)

therefore
v(x, t) 6M + εl2 (7)

on all R.
By definition of v(x, t) we have that

u(x, t) 6M + ε(l2 − x2) (8)

on all R, but this implies u(x, t) 6M .
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6.2.3 Uniqueness and stability

Exercise 4. Prove the uniqueness of the initial value problem for the heat
equation on an interval with Dirichlet boundary conditions using the maximum
and minimum principles.

Exercise 5. Prove the stability in uniform sense of the initial value problem
for the heat equation on an interval with Dirichlet boundary conditions using
the maximum and minimum principles.

6.3 Energy method

Reading: sections 1.5, 2.3 of [S].

Outline: energy method, uniqueness and stability in the mean-square sense.

Exercise 6. Prove the uniqueness of the initial value problem for the heat
equation on an interval with Dirichlet boundary conditions using the energy
method.

Exercise 7. Prove the stability in mean-square sense of the initial value problem
for the heat equation on an interval with Dirichlet boundary conditions using
the energy method.

6.4 Heat equation on the whole line: Green’s function

Reading: section 2.4 of [S]. Exercises 1, 2, 3, 4, 5, 9, 10, 11, 13, 15.

Exercise 8. Prove that the Green’s function

S(x, t) =
1√

4πkt
e−

x2

4kt : (9)

1. satisfies the heat equation for t > 0;

2. is even in x;

3. has the limit

lim
t→0+

S(x, t) =

{
0 x 6= 0,

+∞ x = 0.
(10)

6.5 The heat equation on the half-line

Reading: section 3.1 of [S]. Exercises: 1, 2, 3.

6.6 Separation of variables for the heat equation on the
interval

Reading: sections 4.1, 4.2 of [S]. Exercises 2, 3 of section 4.1, exercises 1, 3, 4
of section 4.2.
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Exercise 9. Solve the initial value problem for the following equation on the
interval 0 < x < π for t > 0:

ut = uxx − 4u,

ux(0, t) = u(π, t) = 0,

u(x, 0) = x2 − π2.

6.7 Smoothing property of the heat equation

Reading: Section 3.5 of [S].

We state a rigorous result about the solution formula (??):

Theorem. Let φ(x) be a bounded continuous function on the real line. The
solution formula (??) defines an infinitely differentiable function u(x, t) for t >
0 and x ∈ R, which satisfies the heat equation (1). Moreover

lim
t→0+

u(x, t) = φ(x).

Notice that, in sharp contrast with the case of the wave equation, a contin-
uous but singular initial data becomes smooth as soon as t > 0. This is known
as the smoothing property of the heat equation.

The theorem above holds true even for piecewise continuous initial data, but
in that case the limit for t→ 0+ gives

lim
t→0+

u(x, t) =
1

2
(φ(x+) + φ(x−)).

For a proof see section 3.5 of [S].

6.8 Solutions to some exercises

6.8.1 [S] §2.3 Ex. 1

Can easily check that u(x, t) = 1 − x2 − 2kt solves ut = kuxx by taking
derivatives. The locations of the maximum and minimums on the rectangle
(x, t) ∈ R = [0, 1] × [0, T ] can be found as usual by evaluating derivatives.
ut = −2k is never vanishing, so critical points cannot be in the interior of R,
confirming the maximum principle. On the line t = 0 we have u = 1−x2 which
has maximum 1 at (0, 0). Similarly for x = 0 we have u = 1− 2kt and for x = 1
we get u = −2kt. So the maximum is at (0, 0).

6.8.2 [S] §2.3 Ex. 2

(a) We know the maximumM(T ) is located either on the initial line for 0 6 x 6 l
or on the sides of the rectangle x = 0, l for 0 6 t 6 T . If we increase T , i.e.
we consider a new rectangle with T ′ > T either we get a new maximum on the
longer sides or we still have the same maximum as before. Hence M(T ) can only
increase (or stay constant) as a function of T . (b) The same reasoning implies
that the minimum m(T ) can only decrease or stay constant as a function of T .
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6.8.3 [S] §2.3 Ex. 4

(a) Use the maximum and minimum principles. (b) Define w(x, t) = u(1− x, t)
and show that it satisfies the same equation and the same initial and boundary
conditions as u(x, t). Hence by uniqueness they must coincide. (c) Compute the
derivative of the energy and show that it is equal to a strictly negative quantity.

6.8.4 [S] §2.3 Ex. 6

Let w = u − v. Notice that w is positive for t = 0, x = 0 and x = l, hence its
minimum must also be positive. Finally use the minimum principle.

6.8.5 [S] §2.4 Ex. 1

The solution formula gives

u(x, t) =
1√

4πkt

∫ l

−l
e−

(x−y)2
4kt dy. (11)

We want the exponent to be in the standard form −p2, hence we perform the
change of variable

p =
x− y√

4kt
. (12)

The integral becomes
√

4kt

∫ x+l√
4kt

x−l√
4kt

e−p
2

dp. (13)

Splitting the integral in two parts and using the definition of error function we
get

u =
1

2
Erf

x+ l√
4kt
− 1

2
Erf

x− l√
4kt

. (14)

6.8.6 [S] §2.4 Ex. 2

By manipulation of the integral we obtain

u = 2− 1

2
Erf

−x√
4kt
− 3

2
Erf

x√
4kt

. (15)

6.8.7 [S] §2.4 Ex. 3

By completing the square as in Example 2 of [S] we get

u = e3x+9kt. (16)

6.8.8 [S] §2.4 Ex. 4

u =
1

2
e−x+kt

(
1− Erf

−x+ 2kt√
4kt

)
. (17)

6.8.9 [S] §2.4 Ex. 9

Following the steps given in the exercise we obtain

u = x2 + 2kt. (18)
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6.8.10 [S] §2.4 Ex. 10

As explained in the text, by a change of variable we obtain

u = x2 +
4kt√
π

∫ ∞
−∞

e−p
2

p2dp (19)

and comparing with previous exercise the integral equals
√
π/2.

6.8.11 [S] §3.1 Ex. 1

As usual by odd extension we get to formula (6) on page 59 of [S]. Substituting
φ(x) = e−x and expressing as usual the integrals in terms of the error function
we get

u =
1

2
e−x+kt

(
1− Erf

−x+ 2kt√
4kt

)
− 1

2
ex+kt

(
1− Erf

x+ 2kt√
4kt

)
. (20)

6.8.12 [S] §3.1 Ex. 2

Consider the constant solution u(x, t) ≡ 1 on the whole line and the odd solution
of Example 1 of page 59 of [S]. Combine them linearly to obtain a solution that
satisfies the correct initial and boundary conditions on the half-line.

Answer: u = 1− Erf x√
4kt

.
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7 Fourier transform

7.1 Heuristic derivation from Fourier series

Reading: Section 12.3 p.343-344 [S] for the details.

We begin by deriving the inversion formula for the Fourier transform from
the Fourier series of a periodic function of period 2l by taking the limit l→∞.

Following the steps outlined in the textbook and during lecture, we obtain
the following inversion formula

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−ikydy

)
eikxdx. (1)

7.2 Definition of Fourier and inverse Fourier transforms

Let f(x) be a complex valued function on the real line. We define the Fourier
transform of f(x) as a complex valued function on the real line given by

f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx. (2)

Conversely, given a function g(k) on the real line the inverse Fourier trans-
form of g(k) is defined as

ǧ(x) =
1

2π

∫ ∞
−∞

g(k)eikxdk. (3)

Exercise 1. Prove that the Fourier transform (and the inverse Fourier trans-
form) define linear maps.

The inversion formula (1) says that if f̂(k) is the Fourier transform of a

function f(x), then the inverse Fourier transform of f̂(k) gives back the original
function f(x). Below we will reformulate this statement in a more precise way.
Let us first go through some examples of Fourier transforms.

Remark. Here we follow the convention of placing the factor of (2π)−1 in front
of the integral for the inverse Fourier transform. Different text use different
conventions in this regard.

7.3 Examples of Fourier transforms

Exercise 2. Compute the Fourier transform of the rectangular pulse1

f(x) =

{
1 |x| < a

0 |x| > a.
(4)

Example 3. The Fourier transform of the Gaussian function

f(x) = e−
x2

2 . (5)

1Solution: f̂(p) = 2p−1 sin(pa).
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The Fourier transform is given by

f̂(k) =

∫ ∞
−∞

e−
x2

2 e−ikxdx. (6)

Completing the square as follows

− x2

2
− ikx = −1

2
(x+ ik)2 − k2

2
, (7)

using the identity ∫ ∞
−∞

e−
(x+ik)2

2 dx =

∫ ∞
−∞

e−
x2

2 dx (8)

and the Gaussian integral (10), we obtain

f̂(k) =
√

2πe−
k2

2 . (9)

Exercise 4. Using integration over a contour in the complex plane prove for-
mula (8).

Exercise 5. Prove Gaussian integral (or Euler-Poisson integral) formula∫ ∞
−∞

e−
x2

2 dx =
√

2π. (10)

Exercise 6. Compute the Fourier transform of the exponentially decaying
pulse2

fr(x) =

{
e−ax x > 0

0 x < 0
(11)

for a > 0.

Exercise 7. Compute the Fourier transform of 3

fl(x) =

{
eax x < 0

0 x > 0
(12)

for a > 0.

Exercise 8. Combining fr(x) and fl(x) from the previous two exercises and
using linearity of Fourier transform show that

F [e−a|x|] =
2a

k2 + a2
. (13)

Exercise 9. Show that

F [sign(x)e−a|x|] =
−2ik

k2 + a2
. (14)

Exercise 10. By taking the a→ 0+ limit in the previous exercise show that

F [sign(x)] = −2i

k
. (15)

2Solution: f̂r(k) = (ik + a)−1.
3Solution: f̂l(k) = (−ik + a)−1.
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Exercise 11. Compute the Fourier transform of

f(x) =

{
1
2a cosωx |x| < a,

0 |x| > a
(16)

where a is a positive constant.

7.4 Properties of the Fourier transform

A few important properties of the Fourier transform are given in the following
exercises.

Let f(x) be a function of the real line and f̂(k) its Fourier transform.

Exercise 12. Show that the Fourier transform of the shifted function f(x− ξ)
for ξ ∈ R is

e−ikξ f̂(k). (17)

Exercise 13. Show that the Fourier transform of eiξxf(x) for ξ ∈ R is

f̂(k − ξ). (18)

Exercise 14. Show that the Fourier transform of f(cx) for c > 0 is

1

c
f̂(
k

c
). (19)

Exercise 15. Using the previous result compute the Fourier transform of

e−
ax2

2 . (20)

A particularly important property is the fact that the Fourier transform
maps the derivative to the multiplication by ik. More precisely let us derive
w.r.t x the inverse Fourier transform formula4

GAP 1

We see that
F [f ′(x)] = ikf̂(k). (21)

A similar calculation, deriving the Fourier transform formula w.r.t p, gives
the Fourier transform of the product xf(x):

GAP 2

The convolution of two functions f(x), g(x) on the real line is a function
(f ∗ g)(x) on R defined by

4We assume the integrand is nice enough to bring the derivative inside the integral.
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GAP 3

Exercise 16. Prove that the Fourier trasform F [f ∗g] of the convolution of two

functions f(x), g(x) is given by the product f̂(k)ĝ(k) of their Fourier transforms.

Exercise 17. Prove the following properties of the convolution

f ∗ g = g ∗ f (22)

(f ∗ g)′ = f ′ ∗ g = f ∗ g′ (23)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (24)

Exercise 18. Derive the Fourier transform (9) of the Gaussian as follows: first,

write a first order ordinary differential equation for f(x) = e−
x2

2 ; second, take
the Fourier transform and solve the resulting ODE in the variable k; finally fix
the integration constant using (10).

7.5 Derivation of Poisson formula using the Fourier trans-
form

Consider the initial value problem for the heat equation on the real line

GAP 4

Let us consider the Fourier transform of the heat equation and of the initial
condition (w.r.t. the variable x)

GAP 5

The resulting problem is a first order ODE for û(p, t) that can be easily
solved

GAP 6

Performing the inverse Fourier transform we can express the solution as a
convolution

u(x, t) = φ ∗ ψ (25)
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Finally we obtain the inverse Fourier transform of ψ̂(p, t) = e−ktp
2

GAP 7

The resulting formula is the Poisson integral

GAP 8

Exercise 19. Consider the ODE for a function u(x) on the line −∞ < x <∞

− uxx + ω2u = h(x) (26)

with a given forcing function h(x). By taking the Fourier transform of the ODE

find a solution u(x) in terms of the Fourier transform ĥ(k) of h(x).

7.6 Inversion theorem for Fourier transform

The Fourier transform can be applied to different types of functions for which
the definition (2) makes sense.

We consider here the simplest case where f(x) is a complex valued integrable
continuous function and also the Fourier transform is an integrable function.
Recall that a function f : R→ C is called (absolutely) integrable if∫ ∞

−∞
|f(x)|dx <∞. (27)

Theorem. If f(x) is a continuous integrable function and its Fourier transform

f̂(k) is also an integrable function, then the inversion formula (1) holds true,
i.e.,

1

2π

∫ ∞
−∞

f̂(k)eikxdk = f(x). (28)

This is the simplest and most important version of the inversion theorem,
and the one we have to keep in mind. Let’s see what we can say in some other
case.

• Suppose we relax the requirement that f̂(k) is also integrable, but we ask
that f(x) is differentiable. In such case we have:

Theorem. If f(x) is a differentiable integrable function, then

lim
R→∞

1

2π

∫ R

−R
f̂(k)eikxdk = f(x). (29)

• Suppose now we allow both f(x) and f ′(x) to be piecewise continuous. In
such case we have:
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Theorem. If f(x) is an integrable function, and both f(x) and the deriva-
tive f ′(x) are piecewise continuous, then

lim
R→∞

1

2π

∫ R

−R
f̂(k)eikxdk =

1

2
(f(x+) + f(x−)). (30)

So, in particular, if x is a point where f(x) is continuous, we have the
same result as above. It at x there is a jump the inverse Fourier transform
converges to the average of the left and right limits of f at x.

• Another important case is when f is a square integrable function, see later
for some results in this case.

Exercise 20. Consider again Exercise 2. Applying the inversion theorem for a
piecewise continuous function with piecewise continuous derivative, show that
the inverse Fourier transform of f̂(p) has value 1/2 at x = ±a.

Exercise 21. Using the inversion theorem and the result of Exercise 8, evaluate
the following nontrivial integral∫ ∞

−∞

eipx

p2 + a2
dp. (31)

7.7 Fourier transform for square integrable functions

We say that a complex valued function f(x) on R is square integrable if∫ ∞
−∞
|f(x)|2dx <∞. (32)

The functions f : R → C which are square integrable form a vector space
which is denoted L2(R). Notice that a square integrable function does not have
to be differentiable or even continuous.

Exercise 22. Show that the functions f(x) = 1 and f(x) = eikx, k ∈ R are not
in L2(R).

Exercise 23. Show that any piecewise continuous C-valued function f(x) on
R such that |f(x)| 6 M |x|−1/2−δ for large |x|, for some M > 0, δ > 0, belongs
to L2(R).

Given two complex valued functions f , g on R we define their Hermitian
inner product as

(f, g) =

∫ ∞
−∞

f(x)g(x)dx. (33)

The L2-norm of a complex valued function on R is defined as

‖f‖2 = (f, f)
1
2 =

(∫ ∞
−∞
|f(x)|2dx

) 1
2

. (34)

Clearly a function f is square integrable if and only if ‖f‖2 <∞.
On the space of square integrable functions L2(R) two important inequalities

hold true: the Cauchy-Schwarz and the triangle inequality.
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Theorem. The Hermitian inner product and the norm on L2(R) satisfy the
Cauchy-Schwarz inequality

|(f, g)| 6 ‖f‖2‖g‖2 (35)

and the triangle inequality

‖f + g‖2 6 ‖f‖2 + ‖g‖2 (36)

for every f, g ∈ L2(R).

Exercise 24. Prove Cauchy-Schwarz inequality.

Exercise 25. Using Cauchy-Schwarz inequality prove the triangle inequality.

Remark. The Cauchy-Schwarz inequality and the triangle inequality are the
most important inequalities in functional analysis, and in particular they are
true not only in the case of L2(R) but for any complex vector space with an
Hermitian inner product.

The Fourier transform is well-behaved on the the space of square integrable
functions. We have in particular:

Theorem. The Fourier transform of a square integrable function f(x) is a

well-defined square integrable function f̂(k).

We have therefore that the Fourier transform defines a linear map of L2(R)
to itself:

F : L2(R)→ L2(R). (37)

Moreover the Fourier transform preserves the Hermitian inner product in
L2(R). This is the statement of the Parseval’s equality:

Theorem. If f, g ∈ L2(R), denote f̂ , ĝ their Fourier transforms, then

(f, g) =
1

2π
(f̂ , ĝ) (38)

or, more explicitly,∫ ∞
−∞

f(x)g(x) dx =
1

2π

∫ ∞
−∞

f̂(k)ĝ(k) dk. (39)

We say that the Fourier transform is a unitary map from L2(R) to itself.

Exercise 26. Show that a function f ∈ L2(R) and its Fourier transform f̂(k)

have the same L2-norm, up to a factor (2π)−
1
2 .

Exercise 27. Show that if two square integrable functions are orthogonal, then
also their Fourier transforms are orthogonal.

Remark. The coefficient (2π)−1 is due to our choice of constant in front of the
Fourier and inverse Fourier transforms.

Remark. Of course, as expected, the inverse Fourier transform also maps square
integrable functions to square integrable functions, and preserves the inner prod-
uct. Moreover, morally it is indeed the inverse of the map (37). However, to be
really precise in this case we should take into account the fact that a function
f in L2(R) can have zero norm, i.e., ‖f‖2 = 0. If we identify two functions in
L2(R) if their difference has zero norm, then the statement above is rigorously
true, i.e., the inverse Fourier transform give the inverse of the the map (37).
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7.8 Solutions to some exercises

7.8.1 Ex. 11

Let

cosωx =
1

2
(eiωx + e−iωx) (40)

in the definition of Fourier transform and get

f̂(k) =
1

4a

∫ a

−a
(ei(w−k)x + e−i(w+k)x) dx. (41)

By integrating the exponentials this is equal to

1

2a

sin(ω − k)a

w − k
+

1

2a

sin(ω + k)a

w + k
. (42)

7.8.2 Ex. 19

Taking the Fourier transform of the ODE we get

p2û+ ω2û = ĥ (43)

that we can easily solve

û(p) =
ĥ(p)

p2 + ω2
. (44)

Recalling that F [e−ω|x|] = 2ω
p2+ω2 , and that the Fourier transform of the con-

volution of two functions is given by the product of the Fourier transforms, we
get

u = F−1[ĥ · 1

p2 + ω2
] = h(x) ∗ F−1[

1

p2 + ω2
] =

1

2ω
h(x) ∗ e−ω|x|. (45)

7.8.3 [S] §12.3 Ex.6

1. By definition of inverse Fourier transform and using the fact that f(x) is
band-limited we have

f(x) =
1

2π

∫ π

−π
f̂(k)eikx dk. (46)

Evaluating this at x = −n we get exactly the definition of the Fourier
coefficient cn, for which we know

f̂(k) =
∑
n∈Z

cne
ink =

∑
n∈Z

f(n)e−ink. (47)

Substituting this in (46), exchanging the sum and the integral, and inte-
grating the exponential we get the desired result.

2. A simple computation of the inverse Fourier transform of f̂(k) gives

f(x) =
sinπx

πx
. (48)
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For n ∈ Z, n 6= 0 the sine vanishes so

f(n) = 0, n 6= 0, (49)

but for n = 0 we get an indeterminate form, that is evaluated using (for
example) l’Hopital’s rule

f(0) = lim
x→0

sinπx

πx
=

0

0
= lim
x→0

π cosπx

π
= 1. (50)

7.8.4 [S] §12.3 Ex.7

1. Since f(x) vanishes for large x, the sum in
∑
n f(x + 2πn) is finite for

every x, hence the function g(x) is well-defined. Then

g(x+ 2π) =
∑
n∈Z

f(x+ 2πn+ 2π) =
∑
n∈Z

f(x+ 2πn) = g(x), (51)

hence g(x) is periodic.

2. By definition of Fourier coefficients of a 2π-periodic function

cm =
1

2π

∫ π

−π
g(x)e−imx dx (52)

=
1

2π

∑
n

∫ π

−π
f(x+ 2πn)e−imx dx (53)

that by changing variable of integration to y = x+ 2πn is equal to

1

2π

∑
n

∫ π+2πn

−π+2πn

f(y)e−imy dy. (54)

This is clearly equal to F (m)/2π, where F (k) is the Fourier transform of
f(x).

3. The Fourier series for g(x) is then

g(x) =
1

2π

∑
n

F (n)einx. (55)

Setting x = 0 we get the desired result.
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8 Laplace equation

8.1 Laplace and Poisson equations

Reading: Section 6.1 of [S]. Exercises 1, 5, 6.

Let us consider the Laplace equation in two dimensions. Although it differs
from the wave equation only by a sign, the properties of this PDE are completely
different.

The Laplacian operator ∆ in this case is

GAP 1

The Laplace equation is

GAP 2

A real-valued function u(x, y) that satisfies the Laplace equation is called
harmonic.

The inhomogeneous version of the Laplace equation is called Poisson equa-
tion

GAP 3

Remark. The Laplace equation in one dimension is trivial:

GAP 4

Notice that there is no preferred “time” or “space” variable in the case of
Laplace equation. A consequence of this is that there is no well-posed initial
value problem. The correct problems associated to the Laplace equation are
boundary value problems of Dirichlet and Neumann type.

Dirichlet boundary value problem:

GAP 5
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Exercise 1. State the Dirichlet problem in one dimension and find its solution.

Example 2. The wave equation in 2 + 1 dimensions (2 spatial and 1 time
variables) is

utt = uxx + uyy. (1)

The stationary solutions are those that do not depend on time t. It follows
that the stationary solutions of the wave equation are harmonic functions in
two variables.

Example 3. Let f = u + iv : C → C be a complex valued function on the
complex plane. It is analytic if it is expressible as power series in z = x+ iy ∈ C

f(z) =
∑
n>0

anz
n. (2)

Deriving with respect to y, resp. x, we get

∂f

∂y
= i

∑
n>0

nanz
n−1 = i

∂f

∂x
. (3)

It follows that u, v satisfy the Cauchy-Riemann equations

ux = vy, uy = −vx. (4)

Therefore both u and v are harmonic functions, i.e.,

uxx = vyx = −uyy, (5)

and similarly for v.

8.2 The maximum principle

Let D be a connected bounded open subset of R2, let D̄ = D∪∂D be its closure
and ∂D its boundary. Let u be a harmonic function on D which is continuous
on D̄.

The maximum principle states that, if u is not constant, then the maximum
of u is achieved only on the boundary ∂D.

More explicitly, there exists xM ∈ ∂D s.t. u(x) 6 u(xM ) for all x ∈ D̄ and
u(x) < u(xM ) for all x ∈ D.

The proof of the maximum principle will be given later using the mean value
property.

Exercise 4. State the analogous minimum principle. Prove it using the maxi-
mum principle.

Exercise 5. Let B(x, r) be the open ball of radius r > 0 centered at x ∈ R2

B(x, r) = {y ∈ R2 | |x− y| < r}. (6)

Recall the definitions of open, closed, bounded and connected subset of R2.
Write the definition of closure D̄ and boundary ∂D of an open set D ⊂ R2.

Exercise 6. Prove uniqueness of the solution of the Dirichlet problem for the
Laplace equation using the maximum principle.
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Exercise 7. Prove the continuous dependence on the boundary data (i.e. sta-
bility) of the Dirichlet problem for the Laplace equation: let u1, u2 be two
harmonic functions on a domain D as above. Suppose that

|u1(x)− u2(x)| 6 ε for x ∈ ∂D. (7)

Using maximum (and minimum) principle, show that

|u1(x)− u2(x)| 6 ε for x ∈ D̄. (8)

Exercise 8. The weak maximum principle states that the maximum of a har-
monic function has to be achieved on the boundary ∂D. Prove the weak maxi-
mum principle by deforming the harmonic function u (as in the case of the weak
maximum principle for the heat equation), i.e., let

v(x, y) = u(x, y) + ε(x2 + y2) (9)

for ε > 0. Deduce that v cannot have a maximum in D. Finally conclude that
u has maximum on ∂D. See p. 155 of [S].

8.3 Separation of variables on a rectangle

Reading: Section 6.2 of [S]. Example 1, exercises: 1, 3, 4, 5.

Consider the Laplace equation uxx + uyy = 0 in the rectangle R = {(x, y) ∈
R2 s.t. 0 < x < a, 0 < y < b}.

Let us look for separated solutions u(x, y) = X(x)Y (y). Substituting we get
two ODEs

GAP 6

Depending on the sign of the separating constant λ, we obtain different types
of solutions

GAP 7

Note that using the superposition principle for linear equations we can im-
pose the inhomogeneous b.c. one at the time. First impose the homogeneous b.c.
on three sides of the rectangle, and find the separated solutions. By combining
them find the general solution, then impose the inhomogeneous b.c.
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Exercise 9. Solve the Dirichlet problem for the Laplace equation on the rect-
angle R with the b.c.

u(x, 0) = f(x), u(x, b) = u(0, y) = u(a, y) = 0. (10)

Hint: impose first the homogeneous (i.e. vanishing) b.c., then obtain a gen-
eral solution in the form of a series, and finally impose the remaining b.c.

Exercise 10. Find the solution u(x, y) to the Dirichlet b.v.p. for the Laplace
equation in the rectangle

0 < x < a, 0 < y < b (11)

with b.c.

u(0, y) = y(b− y), u(x, 0) = sin
πx

a
, u(x, b) = u(a, y) = 0. (12)

Hint: write u as the sum of two solutions u1 and u2, each having an inhomoge-
neous b.c. only on one side of the rectangle.

8.4 Separation of variables on a circle and Poisson’s for-
mula

Reading: Section 6.3 of [S]. Exercise 1, 2.

Exercise 11. Show that the Laplacian operator is invariant under translations

x′ = x+ a, y′ = y + b, (13)

and rotations by an angle α{
x′ = x cosα+ y sinα,

y′ = −x sinα+ y cosα
(14)

in the plane. (See p.156 in [S].)

Exercise 12. The polar coordinates (r, θ) on R2 are defined by{
x = r cos θ,

y = r sin θ.
(15)

Show that the Laplacian ∆ in polar coordinates is given by

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (16)

(See p.156-7 of [S])

Exercise 13. Show that the harmonic functions that are rotationally invariant,
i.e., that in polar coordinates do not depend on θ, are given by

u(r, θ) = c1 log r + c2. (17)

Exercise 14. Find the separated solutions to the Laplace equation on a disk
in polar coordinates.
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Exercise 15. Find the general solution by taking an infinite linear combination
of the separated solutions with arbitrary coefficients. Find the coefficients in
terms of the boundary value h(θ) on the circle, using periodic Fourier series
formulas.

Exercise 16. Show that the infinite sum obtained in the previous exercise can
be summed.

By performing separation of variables in polar coordinates we have obtained
the Poisson’s formula

GAP 8

One can prove that, given a continuous function h on the circle of radius a,
the Poisson’s formula defines a function u which is harmonic in the interior of
the disc of radius a, and continuous on the closure of the disk, and the limit of
u(x) for x approaching the boundary point y is given by h(y).

Exercise 17. By using separation of variables in polar coordinates (r, θ), find
the harmonic function on the annular domain

a < r < b (18)

with the boundary conditions

u|r=a = 1,

(
∂u

∂r

)
r=b

= (cos θ)2. (19)

8.5 Mean value property

Let u be a harmonic function on an open subset D of R2. Denote Cx,a (resp.
Dx,a) the circle (resp. the disk) of center x and radius a

GAP 9

If Cx,a is contained in D, then the mean of u on Cx,a is defined as the integral

GAP 10

Let Dx,a ⊂ D; the mean value property states that the mean of u on the
circle Cx,a centered at x is equal to the value of u at the center x.

Let (r, θ) be polar coordinates centered at the point x. The proof is simply
obtained by setting r = 0 in the Poisson formula with boundary condition
h(θ) = u(a, θ).
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Exercise 18. Let the notations be as above. Argue why the value of u inside
Dx,a is given by the Poisson formula with h(θ) = u(a, θ).

Exercise 19. Show that a (trivial) version of the mean value property holds
for the one-dimensional Laplace equation.

Exercise 20. Using the mean value property prove the strong maximum prin-
ciple. See. p. 169 of [S].

8.6 Some solutions to exercises

8.6.1 [S] §6.1 Ex. 5

u =
r2

4
− a2

4
(20)

8.6.2 Ex. 9

u(x, y) =
∑
n>0

Bn

sinh
(
πn
a b
) sinh

(πn
a

(b− y)
)

sin
(πn
a
x
)

(21)

Bn =
2

a

∫ a

0

f(x) sin
(πn
a
x
)
dx (22)

8.6.3 Ex. 10

u(x, y) =
∑
n>0

An sinh
(πn
b

(x− a)
)

sin
(πn
b
y
)

+
sinh

(
π
a (y − b)

)
sinh

(
−πba

) sin
(πx
a

)
(23)

An =

4b2

(nπ)3 (1− (−1)n)

sinh
(
−πnab

) (24)

8.6.4 Ex. 17

By writing the Laplace equation in polar coordinates (r, θ) and looking for
separated solutions u(r, θ) = R(r)Θ(θ) we obtain two ODEs

−Θ′′ = λΘ, r2R′′ + rR′ = λR. (25)

Since Θ has to be 2π-periodic, the first ODE is an eigenvalue problem, with
eigenvalues λn = n2 for n > 0 and corresponding eigenfunctions

Θ(1)
n = cosnθ, Θ(2)

n = sinnθ (26)

for n > 0 and
Θ0 = 1 (27)

for n = 0.
The general solution to the second ODE corresponding to the eigenvalue λn

for n > 0 is obtained by substituting R = rα and solving the characteristic
equation α2 = n2, which implies α = ±n, so there are two linearly independent
solutions

rn, r−n. (28)
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The case n = 0 is solved by separation of variables. It has two linearly indepen-
dent solutions

1, log r. (29)

Since our original problem has two inhomogeneous boundary conditions, we
must split it as sum of two problems with only one inhomogemeous b.c.

Problem 1: Consider the boundary conditions

u|r=a = 0,
∂u

∂r
|r=b = cos2 θ. (30)

The homogeneous b.c. implies that

R(a) = 0. (31)

Imposing this b.c. on the general solution of the second ODE found above we
get

Rn(r) =
( r
a

)n
−
(a
r

)n
, for n > 0, (32)

R0(r) = log
r

a
, for n = 0. (33)

Combining the separated solutions in an infinite sum (we can do this because
we have only imposed homogeneous b.c. so far), we get the general solution of
Problem 1:

u(r, θ) =
A0

2
log

r

a
+
∑
n>0

(( r
a

)n
−
(a
r

)n)
(An cosnθ +Bn sinnθ). (34)

Now we can find the coefficients An, Bn in terms of the inhomogeneous b.c.
Using the standard formulas for the full Fourier series we get

A0 =
b

π

∫ 2π

0

cos2 θ dθ, (35)

n

a
An

((
b

a

)n−1

+

(
b

a

)−n−1
)

=
1

π

∫ 2π

0

cosnθ cos2 θ dθ (36)

for n > 0, and Bn = 0.
By using the trigonometric identity 2 cos2 θ = 1 + cos 2θ, we get that

A0 = b, A2 =
a

4

1(
b
a

)
+
(
b
a

)−3 (37)

and the remaining An vanish.
Hence the solution of Problem 1 is

u1 =
b

2
log

r

a
+
a

4

(
r
a

)2 − (ar )2(
b
a

)
+
(
b
a

)−3 cos 2θ. (38)

Problem 2: We now consider the boundary conditions

u|r=a = 1,
∂u

∂r
|r=b = 0. (39)

This problem can be solved as above, or by simply noticing that u ≡ 1 is a
solution that satisfies the b.c.

The solution of the whole exercise is

u = 1 + u1. (40)
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9 Laplace transform

Reading: Section 12.5 of [S]. Examples 2, 3 p.354. Exercises 3, 6, 7 of Section
12.5.

Given a function f(t), its Laplace transform F (s), also denoted L[f(t)] is

F (s) =

∫ ∞
0

f(t)e−st dt. (1)

Example 1. Compute the Laplace transform of f(t) = 1. By definition

F (s) =

∫ ∞
0

e−st dt =
e−st

−s

∣∣∣∞
0

=
1

s
(2)

which converges for s > 0.

Exercise 2. Compute the Laplace transform of f(t) = eat.

Exercise 3. Compute the Laplace trasform of f(t) = sin at and f(t) = cos at.

Exercise 4. Compute the Laplace trasform of f(t) = sinh at and f(t) = cosh at.

Exercise 5. Compute the Laplace transform of H(t− b), where

H(x) =

{
1 x > 0,

0 x < 0.
(3)

Exercise 6. Show that the Laplace transform is a linear operator.

Example 7. The Laplace transform of the derivative of f(t) is

L[f ′(t)] = sL[f(t)]− f(0). (4)

To show this we use integration by parts

GAP 1

Exercise 8. Using formula (4) show that

L[f ′′(t)] = s2L[f(t)]− sf(0)− f ′(0). (5)

Exercise 9. Show that the Laplace transform of ebtf(t) is F (s− b).

Exercise 10. By deriving the definition of Laplace transform w.r.t. s, show
that

L[tf(t)] = −F ′(s). (6)

Exercise 11. Using previous exercise show that

L[tk] = (−∂s)k
1

s
. (7)

Derive that

L[tk] =
k!

sk+1
. (8)
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Exercise 12. By a change of integration variable show that for c > 0

L[f(ct)] =
1

c
F (
s

c
). (9)

Exercise 13. Compute L[tf ′(t)].

Exercise 14. Show that the Laplace transform of the “convolution” of two
functions g(t) and f(t) i.e. ∫ t

0

g(t− t′)f(t′) dt′ (10)

is given by the product of their Laplace transforms G(s)F (s). Hint: Write
definition of Laplace transform of (10) and change the order of integration in
the resulting double integral, paying attention to the extremes of integration.

The Laplace transform can be used to reduce initial value problems for ODEs
to algebraic problems. Let us consider a simple example to illustrate the method.

Example 15. Solve the initial value problem

y′′ − 5y′ + 6y = 0, y(0) = y′(0) = 2. (11)

Denote Y (s) the Laplace transform of y(t). Applying the Laplace transform to
the ODE above and taking into account the initial conditions we obtain

Y (s) =
2s− 8

s2 − 5s+ 6
. (12)

Rewriting the result a sum of simple fractions and recalling the form of the
Laplace transform of the exponential we get

Y (s) = L[4e2t − 2e3t]. (13)

Hence the solution to the original i.v.p. is

y(t) = 4e2t − 2e3t. (14)

Exercise 16. Solve the following i.v.p.

y′′ + 3y′ + 2y = H(x), y(0) = y′(0) = 0. (15)

Exercise 17. Solve the following i.v.p. for a non-constant coefficients ODE5

ty′′ − ty′ + y = 2, y(0) = 2, y′(0) = −4. (16)

5Solution: y = 2− 4t.
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10 Green’s functions

Reading: [S], Sections 7.2 (esp. representation formulas (1) and (5)), 7.3 (esp.
Theorems 1 and 2), 7.4. Exercises 1,3 of Section 7.2, Exercises 1,2,5,6,7,8,11
of Section 7.4.

11 Classification of second order linear PDEs

11.1 Comparison wave, heat and Laplace equations

See section 2.5 of [S].

11.2 General second order linear PDEs in two variables

See section 1.6 of [S].
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A Tests 2013

A.1 First test

Partial Differential Equations - AUC

First exam - 1/10/2013

1. Find the general solution of

dy

dx
− 3

x2
y =

1

x2
(1)

by finding the integrating factor I(x, y) and solving the resulting exact
equation.

2. Let L be a linear operator. Let u1, u2 be solutions of the linear homo-
geneous equation L(u) = 0 and v a solution of the linear inhomogeneous
equation

L(u) = g. (2)

Show that for any constants c1, c2 the function c1u1 +c2u2 +v is a solution
of the inhomogeneous equation (2).

3. Consider the PDE
ux + x2uy = 0 (3)

for the unknown function u(x, y).

(a) Find the characteristic curves in the xy-plane.

(b) Write down the general solution in terms of an arbitrary function of
one variable f .

(c) Check directly that such solution satisfies the equation (1).

(d) Find the solution u(x, y) that satisfies the auxiliary condition

u(x, 0) = arctanx. (4)

(e) Find the general solution of the inhomogeneous equation

ux + x2uy = y + x3. (5)

(Hint: look for a particular solution of the form u = xnym for some
n, m)

4. Write down the simple transport equation describing the concentration
w(x, t) of a pollutant in a pipe containing a liquid moving to the left
with constant speed v. If at time t = 0 the concentration is given by
w(x, 0) = e−x

2

, what is the concentration at time t = T ?

5. Find the solution of the wave equation utt = 2uxx with initial conditions

(a) u(x, 0) = e−x
2

, ut(x, 0) = 0 ;

(b) u(x, 0) = 0, ut(x, 0) = 1
π(4+x2) .
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A.2 Midterm test

Partial Differential Equations - AUC

Midterm exam - 22/10/2013

1. Consider the initial value problem for the wave equation on the half-line
0 < x <∞ with Neumann boundary conditions at x = 0:

utt = c2uxx 0 < x <∞
u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

ux(0, t) = 0

(1)

(a) Define even functions φe, ψe that extend φ, ψ to the real line and show
that the solution u(x, t) given by d’Alembert formula with initial data
φe, ψe is also even.

(b) Show that such solution, restricted on the half line x > 0, solves the
i.v.p. (1).

(c) Write the formula for u(x, t) in terms of φ, ψ in the cases x > ct and
x < ct (assume t > 0).

(d) Sketch in (x, t)-plane the dependence domain for a point (x0, t0) with
t0 > 0, x0 > ct0.

(e) Sketch in (x, t)-plane the dependence domain for a point (x0, t0) with
t0 > 0, 0 < x0 < ct0.

(f) Sketch the influence domain of an interval [a, b] for 0 < a < b.

(g) Repeat the last three questions in the case of Dirichlet b.c. at x = 0.

2. Prove energy conservation for a solution u(x, t) of the wave equation on
the half-line (describing a string of linear mass density ρ and tension T )
with Dirichlet boundary condition u(0, t) = 0, and with initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x) x > 0 (2)

which vanish for x > R > 0.

3. Find:

(a) The Fourier sine series of φ(x) = π
4 −

x
2 on the interval (0, π).

(b) The Fourier cosine series of φ(x) = π
4 −

x
2 on the interval (0, π).

(c) The full Fourier series of the periodic function φ of period 2π defined
by

φ(x) =

{
x 0 < x < π

π π < x < 2π
(3)

and extended periodically.
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4. Consider the following equation on the interval [0, l], with boundary con-
ditions 

utt = c2uxx + ru r < 0

u(0, t) = 0

ux(l, t) = 0.

(4)

(a) Find the separated solutions un = Xn(x)Tn(t). In particular con-
sider the associated eigenvalue problem, find all eigenvalues λn and
eigenfunctions Xn, and solve the associated equation for Tn.

(b) Write the infinite series solution of (4) and find the series represen-
tation of the initial conditions u(x, 0) = φ(x), ut(x, 0) = ψ(x) at
t = 0.

(c) State the definition of symmetric boundary conditions for the eigen-
value problem −X ′′ = λX on the interval [0, l]. Show that the bound-
ary conditions in (4) are symmetric.

(d) Show that the symmetry of the boundary conditions implies orthog-
onality of the eigenfunctions Xn.

(e) Use orthogonality to express the coefficients in the series expansions
of the initial conditions in terms of φ and ψ.

A.3 Third test

Partial Differential Equations - AUC

Third exam - 19/11/2013

In this test there are 5 questions.

1. Consider the infinite series of functions over the interval [a, b]

∞∑
n=1

fn(x) (1)

and let f(x) be a function on [a, b]. Give the definition of pointwise and
uniform convergence of the series

∑∞
n=1 fn(x) to the function f(x).

2. Let Xn, n = 1, 2, . . . be a sequence of real orthogonal functions on the
interval (a, b) w.r.t. the inner product

(f, g) =

∫ b

a

f(x)g(x) dx. (2)

Assume Xn are normalized i.e. ‖Xn‖2 = 1, where the L2-norm is defined
by

‖f‖2 =
√

(f, f). (3)

State the Bessel inequality.
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3. Let u(x, t) be a solution to the heat equation on the rectangle R given by

0 6 x 6 2, 0 6 t 6 2. (4)

Suppose that u(x, t) 6M for all (x, t) ∈ R, and that u(1, 1) = M . Explain
what we can say about u(x, t) according to the strong maximum principle.

4. Consider the heat equation on the interval (0, l) with Neumann boundary
conditions. Find the separated solutions.

5. Let u(x, t) be the solution of the initial value problem for the heat equation
on the real line {

ut = kuxx, −∞ < x <∞, t > 0

u(x, 0) = φ(x).
(5)

Write the solution formula (Poisson integral) for u(x, t). What can we say

about the continuity of the third derivative ∂3u
∂x3 (x, t) for t > 0 ? Com-

pute explicitly (in terms of the error function) the solution for the initial
condition

φ(x) =

{
1 x > 0

2 x < 0.
(6)

A.4 Final test

Partial Differential Equations - AUC

Final exam - 17/12/2013

In this test there are 3 questions. Each sub-question contributes 10%.

1. (a) Compute the Fourier transform f̂(p) of

f(x) =

{
1

2A |x| < A,

0 otherwise.
(1)

According to the inversion theorem, what value assumes the inverse
Fourier transform of f̂(p) at x = ±A ?

(b) Show that the Fourier transform of the convolution f ∗g of two func-

tions f and g is given by the product of their Fourier transforms f̂ ,
ĝ.

(c) Apply the Fourier transform to the initial value problem for the heat
equation on the line{

ut = uxx t > 0, x ∈ R,
u(x, 0) = φ(x).

(2)

Show that the solution u(x, t) is given by the convolution of φ(x)
with the inverse Fourier transform ψ(x, t) of the Gaussian function

ψ̂(p, t) = e−p
2t.
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(d) Write the formula for the Fourier transform of the Gaussian function.
Substituting in the previous formula, find the solution formula for the
heat equation on the line.

2. (a) If the Laplace transform of f(t) is given by F (s), what is the Laplace
transform of f ′(t) ? Derive it.

(b) The Laplace transform of sin t is 1
s2+1 . Use the formula above to

obtain the Laplace transform of cos t.

(c) Using the Laplace transform method, solve the initial value problem

2
dy

dt
− y = sin t, y(0) = 0. (3)

3. (a) Let u be a harmonic function on an open bounded connected set
D ⊂ R2 and let ∂D denote the boundary of D.

State the maximum principle for u.

Use the maximum principle to prove uniqueness for the Dirichlet
problem {

∆u = 0 on D,

u = h on ∂D.
(4)

(b) A harmonic function u on the unit disk D = {(x, y) ∈ R2|x2+y2 6 1}
when restricted to the unit circle {x2 + y2 = 1} is equal to u|r=1 =
y = sin θ, where (r, θ) are the polar coordinates. Using the Poisson
formula or the mean value property, find the value of u at the origin.

(c) Find the harmonic function u(x, y) on the square D = {0 < x <
1, 0 < y < 1} such that

ux = 0 for x = 0 and x = 1, u = 0 for y = 0 (5)

and

u =
1

2
+ 2 cos(2πx) for y = 1. (6)
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B Solutions Tests 2013

B.1 First test

1. The integrating factor is
I = e3/x. (1)

Multiplication by I gives an exact equation that we can integrate in the
usual way obtaining

e3/x(y +
1

3
) = c (2)

or explicitly

y =
1

3
+ ce−3/x. (3)

2. Trivial, check the book.

3. (a) Suppose y(x) is the equation for a characteristic curve, then

0 =
du(x, y(x))

dx
= ux + uyyx = uy(yx − x2), (4)

hence
yx = x2 (5)

so that the characteristic curves have equations

y =
x3

3
+ c. (6)

(b)

u(x, y) = f(y − x3

3
) (7)

(c) Trivial.

(d) Imposing the initial condition in the general solution above

u(x, 0) = arctanx = f(−x
3

3
). (8)

By a change of variable z = −x
3

3 we get

f(z) = arctan 3
√
−3z (9)

and finally the solution

u(x, t) = arctan 3
√
x3 − 3y. (10)

(e) Following the hint, one finds that u = xy is a particular solution.
Then the general solution is

u(x, y) = f(y − x3

3
) + xy. (11)
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4. The transport equation is
wt = vwx. (12)

The general solution is

w(x, t) = f(x+ vt). (13)

Imposing the initial condition we get

w(x, 0) = e−x
2

= f(x), (14)

and finally

w(x, t) = e−(x+vt)2 . (15)

5. (a) Using d’Alembert formula with c2 = 2, ψ = 0, φ(x) = e−x
2

we have

u(x, t) =
1

2

(
e−(x+

√
2t)2 + e−(x−

√
2t)2
)
. (16)

(b) Again by d’Alembert formula

u(x, t) =
1

4
√

2π

(
arctan(

x

2
+

t√
2

)− arctan(
x

2
− t√

2
)

)
. (17)

B.2 Midterm test

1. (a) We did it at lecture, just a change of variable in d’Alembert formula

u(x, t) =
1

2
(φe(x+ ct) + φe(x− ct)) +

1

2c

∫ x+ct

x−ct
ψe(s) ds. (18)

(b) The restriction of u(x, t) to x > 0 still solves the wave equation with
the correct initial data. Moreover u is even in x at all t, so ux is odd
in x, hence ux(0, t) = 0, and the b.c. are satisfied.

(c) For t > 0 and x− ct > 0, we also have x+ ct > 0, hence d’Alembert
formula is simply

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s) ds. (19)

For t > 0 and x − ct < 0, we still have x + ct > 0, so d’Alembert
formula becomes

u(x, t) =
1

2
(φ(x+ct)+φ(ct−x))+

1

2c

∫ x+ct

0

ψ(s) ds+
1

2c

∫ −x+ct

0

ψ(s) ds.

(20)

(d)

(e)

(f)

(g)

2. We did this at lecture, only difference here is that the energy is given by
the integral of the energy density on the half line.
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3. (a) Sine Fourier series coefficients, n > 0

An =
2

π

∫ π

0

(π
4
− x

2

)
sinnx dx (21)

This integral is easily computed (using at some point integration by
parts) and is equal to

1

n
for n even (22)

and 0 otherwise. Hence the series is

φ(x) =
∑
m>1

1

2m
sin 2mx. (23)

(b) In this case, n > 0

An =
2

π

∫ π

0

(π
4
− x

2

)
cosnx dx. (24)

This gives

φ(x) =
∑
m>0

2

π(2m+ 1)2
cos(2m+ 1)x. (25)

(c) The result is

φ(x) =
A0

2
+
∑
n>1

(An cosnx+Bn sinnx) (26)

for

A0 =
3

2
π, An =

1

n2π
((−1)n − 1), Bn = − 1

n
, n > 0. (27)

4. (a) The eigenvalues are

λn = (
π

2l
+
πn

l
)2, n > 0 (28)

and the eigenfunctions

Xn = sin(
π

2l
+
πn

l
)x. (29)

The corresponding T equation is

T ′′ + (λnc
2 − r)T = 0 (30)

which has characteristic polynomial with roots

σ = ±iβn, βn :=
√
λnc2 − r (31)

with βn real, since λnc
2 − r > 0. Hence

Tn = An cosβnt+Bn sinβnt (32)

and the separated solutions are

un = (An cosβnt+Bn sinβnt) sin(
π

2l
+
πn

l
)x. (33)
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(b) Taking infinite linear combinations of the separated solutions

u =
∑
n>0

(An cosβnt+Bn sinβnt) sin(
π

2l
+
πn

l
)x, (34)

which gives

φ(x) = u(x, 0) =
∑
n>0

An sin(
π

2l
+
πn

l
)x =

∑
n>0

AnXn (35)

and

ψ(x) = ut(x, 0) =
∑
n>0

Bnβn sin(
π

2l
+
πn

l
)x =

∑
n>0

BnβnXn. (36)

(c) Formula (5) on p.119 of [S] with a = 0, b = l. Clearly it is satisfied
for the b.c. in this exercise.

(d) See p.118-119 of [S].

(e) Orthogonality
(Xn, Xm) = δn,m(Xm, Xm) (37)

implies

An =
(Xn, φ)

(Xn, Xn)
(38)

and

Bn =
1

βn

(Xn, ψ)

(Xn, Xn)
. (39)

An integration by parts shows that

(Xn, Xn) =

∫ l

0

(
sin(

π

2l
+
πn

l
)x
)2

dx =
l

2
. (40)

B.3 Third test

1. See book p.125-6.

2.
N∑
n=1

|An|2 6 ‖f‖22 (41)

for
An = (f,Xn). (42)

3. The maximum appears in the interior of the square R, hence u is constant.

4. Studying the eigenvalue problem −X ′′ = λX with Neumann b.c. we get
the eigenvalues

λn =
(πn
l

)2

, n > 0 (43)

with eigenfunctions

Xn = cos
πn

l
x. (44)
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Solving the equation for T we get the separated solutions

un = e−(πn/l)2kt cos
πn

l
x (45)

for n > 0.

5. By the smoothing property of the heat equation all the derivative exist
and are continuous for t > 0. The formula for the solution of the heat
equation on the line yields, after some manipulations of the integral

u(x, t) =
3

2
− 1

2
Erf

x√
4kt

. (46)

B.4 Final test

1. (a) A simple integration of exponential function gives

f̂(p) =
1

2A

∫ A

−A
e−ipx =

sinAp

Ap
. (47)

By the inversion theorem for piecewise continuous functions, the in-
verse Fourier transform g(x) at the jump points is equal to the aver-
age of the left and right limits i.e.

g(±A) =
1

4A
. (48)

(b) See p. 347 of the book.

(c) By applying the Fourier transform to the heat equation and the initial
condition we get {

ût = −p2û,

û(p, 0) = φ̂(p),
(49)

where û(p, t) is the Fourier transform of u(x, t) in x and φ̂(p) is the
Fourier transform of φ(x). The solution of the ODE in t is clearly

û(p, t) = φ̂(p)e−p
2t = ψ̂(p, t)φ̂(p) = F [ψ ∗ φ]. (50)

By taking the inverse Fourier transform we conclude.

(d) We know that

F [e−x
2/2] =

√
2πe−p

2/2 (51)

and by the rescaling property of the Fourier transform we get

F [e−(ax)2/2] =

√
2π

a
e−p

2/(2a2). (52)

Let a = 1/
√

2t and get ψ = (4πt)−1/2e−x
2/(4t). By substitution get

u(x, t) = ψ ∗ φ =
1√
4πt

∫ ∞
−∞

e−(x−y)2/(4t)φ(y) dy. (53)

2. (a) Simple derivation by parts.
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(b)

L[cos t] = L[(sin t)′] = −(sin t)|t=0 + sL[sin t] =
s

s2 + 1
. (54)

(c) Call Y (s) the Laplace transform of y(t). The Laplace transform of
the equation is

2(sY (s)− y(0))− Y (s) =
1

s2 + 1
, (55)

hence

Y (s) =
1

(s2 + 1)(2s− 1)
. (56)

Rewriting this as a simple fraction

Y (s) =
4

5

1

2s− 1
− 2

5

s

s2 + 1
− 1

5

1

s2 + 1
. (57)

The inverse Laplace transform yields

y =
2

5
et/2 − 2

5
cos t− 1

5
sin t. (58)

3. (a) See the book.

(b) By the mean value property we have just to compute the average

1

2π

∫ 2π

0

sin θ dθ = 0 (59)

(c) The usual procedure of separating variables and imposing the homo-
geneous boundary conditions yields the general solution

u(x, y) =
A0

2
y +

∑
n>1

An cos(πnx) sinh(πny). (60)

Imposing the inhomogeneous b.c. gives

A0 = 1, A2 sinh(2π) = 2 (61)

and the remaining An vanish. Hence

u(x, y) =
y

2
+

2 cos(2πx) sinh(2πy)

sinh(2π)
. (62)
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C Tests 2014

C.1 Midterm test

Partial Differential Equations - AUC

Midterm exam - 24/10/2014

This test contains 4 questions. Each sub-question contributes 10%.

1. Consider the linear first order PDE

ux − xyuy = 0

for the unknown function u(x, y).

(a) Find the characteristic curves and the general solution.

(b) Find the solution corresponding to the initial data

u(0, y) = y2.

2. Consider the wave equation

utt = 4uxx

for the unknown function u(x, t).

(a) Find the solution to the initial value problem on the real line −∞ <
x <∞ for the initial data

u(x, 0) = e−
x2

2 , ut(x, 0) = −2xe−
x2

2 .

(b) Find the solution to the initial value problem on the half line 0 <
x <∞ for the initial data

u(x, 0) = e−
x2

2 , ut(x, 0) = 0

with Neumann boundary conditions at x = 0, i.e.

ux(0, t) = 0.

3. Consider the function

φ(x) =

{
0 0 < x 6 l/2,

1 l/2 < x < l

on the interval (0, l).

(a) Find the Fourier sine series of φ(x).

(b) Does the Fourier sine series converge pointwise on the real line ? To
which function ?

79



4. Consider the eigenvalue problem
−X ′′(x) = λX(x), 0 < x < π,

X(0) = X ′(0),

X(π) = X ′(π).

(a) Show that the boundary conditions above are symmetric. Write down
the inner product and state the orthogonality property of the eigen-
functions Xn corresponding to the eigenvalues λn.

(b) Find the positive (or zero) eigenvalues and the associated eigenfunc-
tions.

(c) Find the unique negative eigenvalue and the associated eigenfunction.

(d) Let
f(x) = x3 + (3− π)(x2 + 2x+ 2).

Does the associated general Fourier series
∑
nAnXn(x) converge to

f(x) in uniform, pointwise, mean-square sense on [0, π] and why ?

C.2 Final test

Partial Differential Equations - AUC

Final exam - 16/12/2014

This test contains 8 (sub-)questions. Each sub-question contributes 12.5%.

1. (a) Using the solution formula for the heat equation on the line, write
the solution u(x, t) of the initial value problem

ut = kuxx, −∞ < x <∞, t > 0,

u(x, 0) =

{
a, |x| < 1,

0, |x| > 1

(1)

in terms of Erf function.

(b) Consider the initial value problem for the heat equation on the in-
terval 0 < x < a with Dirichlet boundary conditions. Prove that the
energy of the solution u(x, t) is decreasing in time.

2. (a) Compute the Fourier transform of

f(x) = sign(x)e−|x|. (2)

(b) Compute the Fourier transform of f(cx) for a constant c > 0, in

terms of the Fourier transform f̂(k) of the function f(x).

3. (a) Let u(x, y) be a harmonic function on a connected bounded open
subset D ⊂ R2 that is continuous on the closure D̄ = D ∪ ∂D. State
the weak and strong maximum principles.
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(b) Prove the weak maximum principle, by considering the function

v(x, y) = u(x, y) + ε(x2 + y2) (3)

for ε > 0.

(c) Find the harmonic functions u(r, θ) on the circle of radius a > 0 that
are of the form

u(r, θ) = R(r)Θ(θ) (4)

where (r, θ) are polar coordinates.

4. Let y(t) a function satisfying the ODE

y′′(t) + ω2y(t) = 0 (5)

and let Y (s) be the Laplace transform of y(t). By taking the Laplace
transform of (5), obtain an equation for Y (s) in terms of y(0), y′(0). By
considering the solution y(t) = cosωt of (5), find the Laplace transform
of cosωt.
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D Solutions Tests 2014

D.1 Solutions midterm test

1. (a) Let y(x) be a characteristic curve. Then it satisfies

yx + xy = 0. (1)

This is solved by separation of variables, obtaining

y(x) = ce−x
2/2. (2)

The general solution is then

u(x, y) = f(yex
2/2). (3)

(b) Imposing the initial condition we get

f(y) = y2 (4)

hence the solution is
u(x, y) = y2ex

2

. (5)

2. (a) A simple application of d’Alembert formula gives

u(x, t) = e−(x+2t)2/2. (6)

(b) The initial value functions φ = e−x
2/2 and ψ = 0 are even functions.

This implies that the d’Alembert formula gives a solution which is
even for all t, hence solves the i.v.p. with Neumann b.c. at x = 0.
Substituting in d’Alembert formula we get

u(x, t) =
1

2

(
e−(x+2t)2/2 + e−(x−2t)2/2

)
. (7)

3. (a) The Fourier sine series coefficients are given by usual formula which
in this case reads

An =
2

l

∫ l

l/2

sin
(nπx

l

)
dx = − 2

nπ

(
cosnπ − cos

nπ

2

)
. (8)

(b) We can apply the theorem for pointwise convergence of the full Fourier
series of a periodic function f(x) on the real line which is piecewise
continuous and with piecewise continuous first derivative. It states
that the associated Fourier series converges pointwise to

f(x+) + f(x−)

2
. (9)

The Fourier sine series of f(x) coincides with the full Fourier series
of the periodic odd extension of f(x).
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Hence in the present case the Fourier series converges pointwise to
the function on the real line

−1 −l < x < −l/2,
−1/2 x = −l/2,
0 −l/2 < x < l/2,

1/2 x = l/2,

1 l/2 < x < l,

0 x = l

(10)

extended by 2l periodicity outside −l < x 6 l.

4. (a) For any pair of functions f , g that satisfy the b.c. in the exercise the
quantity

(f ′g − g′f)π0 (11)

is zero, hence the b.c. are symmetric. This implies that all the
eigenfunctions corresponding to different eigenvalues are orthogonal
w.r.t. the inner product

(f, g) =

∫ π

0

f(x)g(x) dx, (12)

i.e.
(Xn, Xm) = 0 for λn 6= λm. (13)

(b) For λ > 0 the general solution of the second order linear ODE is

X = A cosβx+B sinβx (14)

for β2 = λ. Imposing the b.c. we get

A = B (15)

and
B(1 + β2) sinβπ = 0. (16)

Hence the eigenvalues are

λn = n2 (17)

and the eigenfunctions

Xn = n cosnx+ sinnx (18)

for n > 1 .

For λ = 0 we get that the general solution is

X = Ax+B (19)

and the b.c. imply that A = B = 0 hence λ = 0 is not an e.v.
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(c) For λ < 0 the general solution of the ODE is

X = Aeβx +Be−βx (20)

for β2 = −λ. Imposing the b.c. we get two equations

A(1− β) +B(1 + β) = 0 (21)

and
A(1− β)eβπ +B(1 + β)e−βπ = 0. (22)

For β 6= 1 we can substitute the first in the second and we get

eβπ − e−βπ = 0 (23)

which is impossible. However for β = 1 the first equation implies
B = 0 and so there is a nontrivial eigenfunction

X = ex (24)

corresponding to the eigenvalue λ = −1.

(d) The function f(x) is a polynomial, so it is continuous and f ′(x),
f ′′(x) are continuous too.

Moreover we can check that it satisfies the b.c. above.

By the theorem on convergence of the general Fourier series, we know
that the associated Fourier series converges uniformly to f(x) on the
interval [0, π] and consequently also pointwise and in mean-square
sense.

Mean-square convergence also follows from the fact that a continuous
function on the interval [0, π] has finite L2 norm.

D.2 Solutions final test

1. (a) The solution formula gives

u(x, t) =
a√

4πkt

∫ 1

−1

e−
(x−y)2

4kt dy (25)

changing the variable of integration to p by

p
√

4kt = x− y (26)

and splitting the integral in two we get easily

u(x, t) =
a

2
Erf

(
x+ 1√

4kt

)
− a

2
Erf

(
x− 1√

4kt

)
. (27)

(b) The energy is

E =
1

2

∫ a

0

u2 dx. (28)

Derivating w.r.t. t and using the heat equation ut = kuxx we get

Et = k

∫ a

0

uuxx dx. (29)
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Integrating by parts, since the boundary terms vanish because of the
Dirichlet b.c., this equals

− k
∫ a

0

(ux)2 dx 6 0. (30)

2. (a) Splitting the integral in the definition of Fourier transform in two we
get

f̂(k) =

∫ ∞
0

e−x−ikx dx−
∫ 0

−∞
ex−ikx dx. (31)

Integrating the exponentials we get

f̂(k) =
−2ik

1 + k2
. (32)

(b) Just a change of variable in the definition of Fourier transform.

3. (a) Weak maximum principle: the maximum of u is achieved on ∂D.
Strong maximum principle: for u non-constant, the maximum of u is
achieved on ∂D only.

(b) See book.

(c) See book.

4. Apply the Laplace transform and get

Y (s) =
sy(0) + y′(0)

s2 + ω2
. (33)

If y(t) = cosωt then y(0) = 1 and y′(0) = 0 so

Y (s) =
s

s2 + ω2
. (34)
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E Tests 2015

E.1 First test

Partial Differential Equations - AUC

First exam - 25/09/2015

1. Find the general solution of

dy

dx
− 2

x3
y =

3

x3

by finding the integrating factor I(x, y) and solving the resulting exact
equation.

2. Let L be a linear operator. Let u0 be a solution of the linear homoge-
neous equation L(u) = 0 and let ui (i = 1, 2) be a solution of the linear
inhomogeneous equation

L(u) = gi.

Show that for any constants c1, c2 the function u0 + c1u1 + c2u2 is a
solution of the inhomogeneous equation

L(u) = c1g1 + c2g2.

3. Consider the PDE
ux + (cosx)uy = 0 (1)

for the unknown function u(x, y).

(a) Find the characteristic curves in the xy-plane.

(b) Write down the general solution in terms of an arbitrary function of
one variable f .

(c) Check directly that such solution satisfies the equation (1).

(d) Find the solution u(x, y) that satisfies the auxiliary condition

u(
π

2
, y) = y3.

(e) Verify that the function u(x, y) = x sin y is a particular solution of
the inhomogeneous equation

ux + (cosx)uy = sin y + x cosx cos y. (2)

Then write down the general solution of the inhomogeneous equa-
tion (5).

4. Write down the simple transport equation describing the concentration
w(x, t) of a pollutant in a pipe containing a liquid moving to the right
with constant speed v. If at time t = 0 the concentration is given by
w(x, 0) = 1

1+x8 , what is the concentration at time t = T ?

5. Find the solution of the wave equation utt = 9uxx with initial conditions

(a) u(x, 0) = x
1+x4 , ut(x, 0) = 0 ;

(b) u(x, 0) = 0, ut(x, 0) = x2e−x
3

.
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E.2 First test (modified)

Partial Differential Equations - AUC

First exam (modified) - 06/10/2015

1. Find the general solution of

dy

dx
− 4

x5
y =

12

x5

by finding the integrating factor I(x, y) and solving the resulting exact
equation.

2. Let L be a linear operator. Let ui (i = 1, 2) be a solution of the linear
inhomogeneous equation

L(u) = ci,

where c1 and c2 are constants. Show that the function u = c2u1 − c1u2 is
a solution of the homogeneous equation

L(u) = 0.

3. Consider the PDE
ux +

uy
x

= 0 (1)

for the unknown function u(x, y) defined in the region U = {(x, y)|x > 0}
in the xy-plane.

(a) Find the characteristic curves in the region U .

(b) Write down the general solution in terms of an arbitrary function of
one variable f .

(c) Check directly that such solution satisfies the equation (1).

(d) Find the solution u(x, y) that satisfies the auxiliary condition

u(1, y) = e−y.

(e) Verify that the function u(x, y) = xey is a particular solution of the
inhomogeneous equation

ux +
uy
x

= 2ey. (2)

Then write down the general solution of the inhomogeneous equa-
tion (5).

4. Write down the simple transport equation describing the concentration
w(x, t) of a pollutant in a pipe containing a liquid moving to the left
with constant speed v. If at time t = 0 the concentration is given by

w(x, 0) = e−x
4

1+2x2 , what is the concentration at time t = T ?

5. Find the solution of the wave equation utt = 1
4uxx with initial conditions

(a) u(x, 0) = e−x
2

cosx, ut(x, 0) = 0 ;

(b) u(x, 0) = 0, ut(x, 0) = 1
1+x2 .
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E.3 Second test

Partial Differential Equations - AUC

Second exam - 23/10/2015

1. Consider the initial value problem for the wave equation on the negative
half-line −∞ < x < 0 with Dirichlet boundary conditions at x = 0:

utt = c2uxx −∞ < x < 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

u(0, t) = 0

(1)

(a) Define odd functions φo, ψo that extend φ, ψ to the whole real line
and show that the solution u(x, t), given by the d’Alembert formula
with initial data φo, ψo, is also odd as a function of x.

(b) Show that such a solution, when restricted to the half line x < 0,
solves the i.v.p. (1).

(c) Write the formula for u(x, t) in terms of φ and ψ in the case −x >
ct > 0, and sketch the dependence domain for a point (x0, t0) with
−x0 > ct0 > 0.

(d) Write the formula for u(x, t) in terms of φ and ψ in the case 0 <
−x < ct, and sketch the dependence domain for a point (x0, t0) with
0 < −x0 < ct0.

(e) Sketch the influence domain of an interval [a, b] for a < b < 0.

2. For a solution u(x, t) of the wave equation on the interval [0, l] (describing
a string of linear mass density ρ and tension T ) satisfying the mixed
boundary condition u(0, t) = 0 = ux(l, t) (Dirichlet at one end, Neumann
at the other), prove that the total energy

E =
1

2

∫ l

0

(ρu2
t + Tu2

x)dx

is conserved.

3. Compute:

(a) The Fourier sine series of φ(x) = x− π
2 on the interval (0, π).

(b) The Fourier cosine series of φ(x) = x− π
2 on the interval (0, π).

(c) The full Fourier series of the periodic function φ of period 2π defined
by

φ(x) =

{
0 −π < x < 0

x 0 6 x < π
(2)

and extended periodically.
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4. Recall that a sequence of functions {fn}, n = 1, 2, . . ., defined on the
interval [0, 1], converges to 0 in the mean if the sequence of L1-norms

‖fn‖1 =

∫ 1

0

|fn(x)|dx

tends to 0 as n→∞; it converges to 0 in the mean-squared if the sequence
of L2-norms

‖fn‖2 =

(∫ 1

0

|fn(x)|2dx
) 1

2

tends to 0 as n→∞.

Consider the sequence defined as follows:

fn(x) =


0 0 6 x < 1

4n2

n 1
4n2 6 x 6 1

2n2

0 1
2n2 < x 6 1.

(a) Show that the sequence {fn} converges to the zero function pointwise
on [0, 1];

(b) Show that {fn} converges to 0 in the mean;

(c) Show that {fn} does not converge to 0 in the mean-squared;

(d) Conclude that {fn} does not converge uniformly.

E.4 Second test (modified)

Partial Differential Equations - AUC

Second exam (modified) - 02/11/2015

1. Consider the initial boundary value problem for the wave equation on the
negative half-line −∞ < x < 0 with Neumann boundary conditions at
x = 0: 

utt = c2uxx −∞ < x < 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

ux(0, t) = 0

(1)

(a) Define even functions φe, ψe that extend φ, ψ to the whole real line
and show that the solution u(x, t), given by the d’Alembert formula
with initial data φe, ψe, is also even as a function of x.

(b) Show that such a solution, when restricted to the half line x < 0,
solves the i.b.v.p. (1).

(c) Write the formula for u(x, t) in terms of φ and ψ in the case −x >
ct > 0, and sketch the dependence domain for a point (x0, t0) with
−x0 > ct0 > 0.
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(d) Write the formula for u(x, t) in terms of φ and ψ in the case 0 <
−x < ct, and sketch the dependence domain for a point (x0, t0) with
0 < −x0 < ct0.

(e) Sketch the influence domain of an interval [a, b] for a < b < 0.

2. For a solution u(x, t) of the wave equation on the interval [0, l] (describing
a string of linear mass density ρ and tension T ) satisfying the mixed
boundary condition ux(0, t) = 0 = u(l, t) (Neumann at one end, Dirichlet
at the other), prove that the total energy

E =
1

2

∫ l

0

(ρu2
t + Tu2

x)dx

is conserved.

3. Compute:

(a) The Fourier sine series of φ(x) = π − x on the interval (0, π).

(b) The Fourier cosine series of φ(x) = π − x on the interval (0, π).

(c) The full Fourier series of the periodic function φ of period 2π defined
by

φ(x) =

{
−x −π < x < 0

0 0 6 x < π

and extended periodically.

4. Recall that a sequence of functions {fn}, n = 1, 2, . . ., defined on the
interval [0, 1], converges to 0 in the mean if the sequence of L1-norms

‖fn‖1 =

∫ 1

0

|fn(x)|dx

tends to 0 as n→∞; it converges to 0 in the mean-square if the sequence
of L2-norms

‖fn‖2 =

(∫ 1

0

|fn(x)|2dx
) 1

2

tends to 0 as n→∞.

Consider the sequence defined as follows:

fn(x) =


0 0 6 x < 1− 1

2n2

n 1− 1
2n2 6 x 6 1− 1

4n2

0 1− 1
4n2 < x 6 1.

(a) Show that the sequence {fn} converges to the zero function pointwise
on [0, 1];

(b) Show that {fn} converges to 0 in the mean;

(c) Show that {fn} does not converge to 0 in the mean-square;

(d) Conclude that {fn} does not converge uniformly.
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E.5 Third test

Partial Differential Equations - AUC

Third exam - 20/11/2015

1. Let u(x, t) be a solution to the heat equation on the rectangle R given by

0 6 x 6 3, 0 6 t 6 2.

Let U be the part of the boundary of R consisting of the bottom (t = 0)
and the two lateral sides (x = 0 and x = 3).

(a) Suppose it is known that u(x, t) 6 27 for all (x, t) ∈ U . What can
you say about u(1, 1) according to the weak maximum principle?

(b) Suppose it is further known that u(2, 1) = 27. What can you say
about u(1, 1) according to the strong maximum principle?

2. Consider the heat equation ut = kuxx on the interval (0, π) with mixed
boundary conditions ux(0, t) = u(π, t) = 0. Find the separated solutions

(you may assume the positivity of the eigenvalues of − d2

dx2 for these b.c.).

3. Let u(x, t) be the solution of the initial value problem for the heat equation
on the real line {

ut = 4uxx, −∞ < x <∞, t > 0

u(x, 0) = φ(x).

(a) Write down the solution formula (Poisson integral) for u(x, t).

(b) Suppose φ(x) has a jump discontinuity at x = 0. Does it follow that

u(x, t) has a discontinuity at (x, t) = (2, 1)? What about ∂3u
∂t3 (x, t)?

(c) Compute explicitly (in terms of the error function) the solution for
the initial data

φ(x) =

{
−2 x < 0

3 x > 0.

4. (a) Compute the Fourier transform f̂(p) of

f(x) =

{
1− |x|, |x| < 1,

0 otherwise.

(b) If f̂(p) is the Fourier transform of f(x), show that the Fourier trans-

form of f(cx), c > 0, is 1
c f̂(pc ).

(c) Apply the Fourier transform (in the x variable) to the following initial
value problem: {

ut = 1
2uxx − u, t > 0, x ∈ R,

u(x, 0) = φ(x)
(1)
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and solve the initial value problem for the resulting ODE. Conclude
that the solution u(x, t) of the original IVP is given by the convolution
of φ(x) with the inverse Fourier transform ψ(x, t) of the function

ψ̂(p, t) = e−( p
2

2 +1)t = e−te−
p2

2 t.

(d) Write down the formula for the Fourier transform of the Gaussian

function e−
x2

2 . Use this formula, together with part (b) and the
linearity of the Fourier transform, to find ψ(x, t). Then write down
the solution formula for the original IVP (1).

E.6 Third test (modified)

Partial Differential Equations - AUC

Third exam (modified) - 26/11/2015

1. Let u(x, t) be a solution to the heat equation on the rectangle R given by

0 6 x 6 3, 0 6 t 6 2.

Let U be the part of the boundary of R consisting of the bottom (t = 0)
and the two lateral sides (x = 0 and x = 3).

(a) Suppose it is known that u(x, t) > 11 for all (x, t) ∈ U . What can
you say about u(1, 1) according to the weak maximum principle?

(b) Suppose it is further known that u(2, 1) = 11. What can you say
about u(1, 1) according to the strong maximum principle?

2. Consider the heat equation ut = kuxx on the interval (0, π) with mixed
boundary conditions u(0, t) = ux(π, t) = 0. Find the separated solutions

(you may assume the positivity of the eigenvalues of − d2

dx2 for these b.c.).

3. Let u(x, t) be the solution of the initial value problem for the heat equation
on the real line {

ut = 9uxx, −∞ < x <∞, t > 0

u(x, 0) = φ(x).

(a) Write down the solution formula (Poisson integral) for u(x, t).

(b) Suppose φ(x) has a jump discontinuity at x = 0. Does it follow that

u(x, t) has a discontinuity at (x, t) = (3, 1)? What about ∂3u
∂x∂t2 (x, t)?

(c) Compute explicitly (in terms of the error function) the solution for
the initial data

φ(x) =

{
3 x < 0

2 x > 0.

4. (a) Compute the Fourier transform f̂(p) of

f(x) =

{
1− |x|, |x| < 1,

0 otherwise.
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(b) If f̂(p) is the Fourier transform of f(x), show that the Fourier trans-

form of f(xc ), c > 0, is cf̂(cp).

(c) Apply the Fourier transform (in the x variable) to the following initial
value problem: {

ut = 1
2uxx + u, t > 0, x ∈ R,

u(x, 0) = φ(x)
(1)

and solve the initial value problem for the resulting ODE. Conclude
that the solution u(x, t) of the original IVP is given by the convolution
of φ(x) with the inverse Fourier transform ψ(x, t) of the function

ψ̂(p, t) = e−( p
2

2 −1)t = ete−
p2

2 t.

(d) Write down the formula for the Fourier transform of the Gaussian

function e−
x2

2 . Use this formula, together with part (b) and the
linearity of the Fourier transform, to find ψ(x, t). Then write down
the solution formula for the original IVP (1).

E.7 Fourth test

Partial Differential Equations - AUC

Fourth exam - 18/12/2015

In this test there are 3 questions. Each sub-question contributes 10%.

1. (a) If the Laplace transform of f(t) is given by F (s), derive the formula
for the Laplace transform of f ′(t).

(b) The Laplace transform of cosh t is s
s2−1 . Use the formula derived in

part (a) to obtain the Laplace transform of sinh t.

(c) Using the Laplace transform method, solve the initial value problem

dy

dt
+ 2y = sinh t, y(0) = 0.

2. Find the regions in the xy plane where the equation

yuxx + 2xuxy + uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.

3. (a) Let u be a harmonic function on the unit disk

D = {x = (x, y) ∈ R2 | |x| < 1}

whose boundary value is

u|r=1 = 1 + sin θ − cos 2θ,

where (r, θ) are the polar coordinates. What is u(0)?
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(b) Find the harmonic function u(x, y) on the square

D = {(x, y) ∈ R2 | 0 < x < 1, 0 < y < 1}

such that

ux(0, y) = ux(1, y) = u(x, 1) = 0, u(x, 0) = 1.

(c) Consider the Dirichlet boundary value problem{
∆u = 0 on H,
u = h on ∂H,

(1)

where H = {x = (x, y)|y > 0} is the upper half-plane, so ∂H is the x-
axis; notice that H is unbounded. Show that the function u(x, y) = xy
is harmonic on H. What is its boundary value h? Is u a unique
solution of the BVP (1) with this h?

(d) Show that the solutions of the BVP (1) satisfying the additional
condition

lim
|x|→∞

u(x) = 0

are unique (Hint: apply the maximum principle to the half-disk
HR = {x = (x, y)|y > 0, |x| < R} and then let R→∞).

(e) Recall that the fundamental solution F (x) = 1
2π log |x| of the Laplace

equation in two dimensions satisfies

∆F (x) = δ(x).

Given a point x = (x, y) ∈ H, let x∗ = (x,−y) be its reflection in the
x-axis. Show that for all x = (x, 0) ∈ ∂H and all x0 = (x0, y0) ∈ H
we have |x− x0| = |x− x∗0|. Conclude that

G(x,x0) = F (x− x0)− F (x− x∗0)

is the Green’s function for H.

(f) Use the Green’s function obtained in the previous part to show that
the general solution formula

u(x0) =

∫
∂H
h(x)

∂G(x,x0)

∂n
ds

for the BVP (1) reduces to

u(x0, y0) =
y0

π

∫ +∞

−∞

h(x)dx

(x− x0)2 + y2
0

(Hint: observe that ∂
∂n = − ∂

∂y

∣∣∣
y=0

in this case).
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F Solutions Tests 2015

F.1 First test

1. The integrating factor is

I = ex
−2

. (1)

Multiplication by I gives an exact equation that we can integrate in the
usual way obtaining

ex
−2

(2y + 3) = c (2)

or explicitly

y = −3

2
+ ce−x

−2

. (3)

Alternatively, one can notice that the original equation can be re-written
in a separated form as

dx

x3
=

dy

2y + 3
(4)

and arrive at the same solution.

2. Just calculate L(u0 + c1u1 + c2u2) using linearity.

3. (a) Suppose y(x) is the equation for a characteristic curve, then

0 =
du(x, y(x))

dx
= ux + uyyx = uy(yx − cosx), (5)

hence
yx = cosx (6)

so that the characteristic curves have equations

y = sinx+ c. (7)

(b)
u(x, y) = f(y − sinx) (8)

(c) Trivial.

(d) Imposing the initial condition in the general solution above

u(
π

2
, y) = y3 = f(y − sin

π

2
) = f(y − 1). (9)

By a change of variable z = y − 1 we get

f(z) = (z + 1)3 (10)

and finally the solution

u(x, t) = (y − sinx+ 1)3. (11)

(e) The verification is trivial. Then by the principle of superposition the
general solution is

u(x, y) = f(y − sinx) + x sin y. (12)
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4. The transport equation for motion to the right is

wt + vwx = 0. (13)

The general solution is

w(x, t) = f(x− vt). (14)

Imposing the initial condition we get

w(x, 0) =
1

1 + x8
= f(x), (15)

and finally

w(x, t) =
1

1 + (x− vt)8
. (16)

5. (a) Using d’Alembert formula with c2 = 9, ψ = 0, φ(x) = x
1+x4 we have

u(x, t) =
1

2

(
x− 3t

1 + (x− 3t)4
+

x+ 3t

1 + (x+ 3t)4

)
. (17)

(b) Again by d’Alembert formula

u(x, t) =
1

18

(
e−(x−3t)3 − e−(x+3t)3

)
. (18)

F.2 Second test

1. (a) The odd extension is given by

φo(x) =

{
φ(x) x < 0

−φ(−x) x > 0,

and similarly for ψ. The solution is then given by the d’Alembert
formula

u(x, t) =
1

2
(φo(x+ ct) + φo(x− ct)) +

1

2c

∫ x+ct

x−ct
ψo(s) ds.

One can either see that u is odd directly from this formula, or by ob-
serving that −u(−x, t) solves the same i.b.v.p as u(x, t), and invoking
uniqueness.

(b) The restriction of u(x, t) to x < 0 still solves the wave equation with
the correct initial data. Moreover by the previous part u is odd in x
at all t, hence the b.c. is satisfied.

(c) For −x > ct > 0, we have both x+ ct < 0 and x− ct < 0, hence the
d’Alembert formula is simply

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s) ds.
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(d) For 0 < −x < ct, we now have x + ct > 0, while x − ct < 0 so the
formula becomes

u(x, t) =
1

2
(φ(x− ct)− φ(−x− ct)) +

1

2c

∫ −x−ct
x−ct

ψ(s) ds.

(e) The sketches in all cases are determined by the intervals of integration
in the above formulas.

2. The same calculation as the one in the textbook for the unbounded case,
except it now involves the boundary term

Tutux|l0 = T (ut(l, t)ux(l, t))− ut(0, t)ux(0, t))

which vanishes because the boundary conditions u(0, t) = 0 = ux(l, t)
imply also that ut(0, t) = 0.

3. (a) The Fourier sine series coefficients Bn, n > 0, are given by

Bn =
2

π

∫ π

0

(
x− π

2

)
sinnx dx =

{
− 2
n n even

0 n odd.

Hence the series is

φ(x) = −
∞∑
m=1

sin 2mx

m
.

(b) The Fourier cosine series coefficients An, n > 0, are given by

An =
2

π

∫ π

0

(
x− π

2

)
cosnx dx =

{
− 4
πn2 n odd

0 n even

(in particular, A0 = 0). Hence the series is

φ(x) = − 4

π

∞∑
m=1

cos(2m− 1)x

(2m− 1)2
.

(c) The result is

φ(x) =
π

4
−
∞∑
n=1

(
2

π(2n− 1)2
cos(2n− 1)x+

(−1)n

n
sinnx

)
.

4. For this question it helps to draw the graph of fn for the first few values
of n in order to see the trend.

(a) We have fn(0) = 0 for all n, while for each fixed x ∈ (0, 1] there
exists an N such that 0 < 1

2n2 < x for all n > N , hence fn(x) = 0
for all sufficiently large n. It follows that fn converges to the zero
function on [0, 1].
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(b) We have

‖fn‖1 =

∫ 1

0

|fn(x)|dx =

∫ 1
2n2

1
4n2

n dx =
n

4n2
=

1

4n
,

which clearly tends to 0, implying that the sequence converges to 0
in the mean.

(c) We have

‖fn‖2 =

(∫ 1

0

|fn(x)|2dx
) 1

2

=

(∫ 1
2n2

1
4n2

n2 dx

) 1
2

=

√
n2

4n2
=

1

2
,

which clearly does not tend to 0, hence the sequence does not con-
verge in the mean-square.

(d) We showed in class that uniform convergence implies mean-square
convergence; since the sequence does not converge in the mean-square
by the previous part, it also does not converge uniformly. Alterna-
tively, one can observe that the max-norm of fn is n, forming a
divergent sequence.

F.3 Third test

1. (a) The weak maximum principle implies that u(1, 1) 6 27;

(b) The additional piece of information – that the maximum value is
achieved at an interior point – implies that u is, in fact, constant;
hence, u(1, 1) = 27.

2. Studying the eigenvalue problem −X ′′ = λX with specified b.c. (X ′(0) =
X(π) = 0) we get the eigenvalues

λn =

(
n+

1

2

)2

, n > 0

with eigenfunctions

Xn = cos

(
n+

1

2

)
x.

Solving the equation for T we get the separated solutions

un = e−(n+ 1
2 )2kt cos(n+

1

2
)x

for n > 0.

3. (a) See book (just set k = 4).

(b) By the smoothing property of the heat equation all the derivatives
exist and are continuous for t > 0. Hence, the answer is “no” in both
cases.

(c) The formula for the solution of the heat equation on the line yields,
after some manipulations of the integral,

u(x, t) =
1

2
+

5

2
Erf

x

4
√
t
.
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4. (a) Integration gives

f̂(p) =
1

p2
(2− 2 cos p) =

4

p2
sin2 p

2
.

(b) Immediate by substitution.

(c) By applying the Fourier transform to the equation at hand and the
initial condition we get{

ût = −
(

1
2p

2 + 1
)
û,

û(p, 0) = φ̂(p),

where û(p, t) is the Fourier transform of u(x, t) in x and φ̂(p) is the
Fourier transform of φ(x). The solution of the ODE in t is clearly

û(p, t) = φ̂(p)e−( 1
2p

2+1)t = ψ̂(p, t)φ̂(p) = F [ψ ∗ φ]. (19)

By taking the inverse Fourier transform we conclude that u(x, t) =
ψ(x, t) ∗ φ(x).

(d) We know that

F [e−x
2/2] =

√
2πe−p

2/2

and by the rescaling property of the Fourier transform (cf. part (b))
we get

F [e−(ax)2/2] =

√
2π

a
e−p

2/(2a2).

In this case a = 1/
√
t hence, using the linearity of the (inverse)

Fourier transform, we get

ψ(x, t) = F−1(e−( 1
2p

2+1)t) = e−tF−1(e−
1
2p

2t) =
e−t√
2πt

e−
x2

2t ,

and thus

u(x, t) = ψ ∗ φ =
e−t√
2πt

∫ ∞
−∞

e−
(x−y)2

2t φ(y) dy.

F.4 Fourth test

1. (a) See book.

(b) See book.

(c) Taking the Laplace transform we get

(s+ 2)Y (s) =
1

s2 − 1
, (20)

which can be rewritten as

Y (s) =
1

3

1

s+ 2
+

1

6

1

s− 1
− 1

2

1

s+ 1
. (21)

Therefore the solution is

y(t) =
1

3
e−2t +

1

6
et − 1

2
e−t. (22)
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2. We have
∆ = x2 − y, (23)

therefore the equation is parabolic on the parabola ∆ = 0, elliptic above
the parabola and hyperbolic otherwise.

3. (a) The value is given by the average, i.e., 1.

(b) Separation of variables, imposing only the homogeneous boundary
conditions gives

u =
A0

2
(y−1)+

∑
n>1

cos(nπx)(sinh(πn) cosh(nπy)−cosh(πn) sinh(nπy)).

(24)
Imposing the remaining boundary condition, and recalling the cosine
Fourier series of the constant function, we get that all coefficients An
are zero unless n = 0. Therefore the solution is

u = 1− y (25)

as one could have seen from the beginning!

(c) No uniqueness, e.g.,
u = αy + βxy. (26)

(d) Let M(R) and m(R) be the maximum and minimum of u in HR.
The additional condition implies that they go to zero for R → ∞,
therefore u has to be identically zero. Uniqueness follows.

(e)

(f)
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G Tests 2016

G.1 First test

Partial Differential Equations - AUC

First exam - 30/09/2016

1. Let L be a linear operator. Let u = c1u1 + c2u2 + v be a solution of the
linear inhomogeneous equation

L(u) = g (1)

for each value of the constants c1 and c2. Show that v is a solution of
the inhomogeneous equation (1), and that u1 and u2 are solutions of the
associated homogeneous equation, i.e.,

L(ui) = 0, i = 1, 2.

2. (a) Find the general solution of

d2y

dx2
− 2

x

dy

dx
− x2 = 0, x > 0 (2)

by reducing it to a linear first order ODE, finding the integrating
factor, and solving the resulting exact equation.

(b) From the general solution of equation (2) identify two solutions of
the associated homogeneous equation and show that they are linearly
independent by computing their Wronskian.

3. Consider the PDE
ux + (1 + x2)uy = 0 (3)

for the unknown function u(x, y).

(a) Find the characteristic curves in the xy-plane.

(b) Write down the general solution in terms of an arbitrary function of
one variable f .

(c) Check directly that such solution satisfies the equation (3).

(d) Find the solution u(x, y) that satisfies the auxiliary condition

u(0, y) = e−
1
2y

2

. (4)

(e) Find the general solution of the inhomogeneous equation

ux + (1 + x2)uy = cos(x). (5)

(Hint: look for a particular solution that depends only on x.)

4. Consider the following initial value problem
utt = 4uxx

u(x, 0) = sinx+ ex

ut(x, 0) = −2 cosx+ 2ex.

(6)

(a) Find the solution u(x, t) of the initial value problem.

(b) Identify the right-moving and left-moving parts of the solution.
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G.2 Second test

Partial Differential Equations - AUC

Second exam - 28/10/2016

1. Consider the initial value problem for the wave equation on the half-line
0 < x <∞ with Neumann boundary conditions at x = 0:

utt = c2uxx 0 < x <∞
u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

ux(0, t) = 0

(1)

(a) Define even functions φe, ψe that extend φ, ψ to the real line and show
that the solution u(x, t) given by d’Alembert formula with initial data
φe, ψe is also even. Show that such solution, restricted on the half
line x > 0, solves the i.v.p. (1).

(b) Write the formula for u(x, t) in terms of φ, ψ in the cases x > ct and
x < ct (assume t > 0).

(c) Sketch in (x, t)-plane the dependence domain for a point (x0, t0) with
t0 > 0, 0 < x0 < ct0.

2. Consider a solution u(x, t) to the wave equation on the interval [0, l] (de-
scribing a string of length l of linear mass density ρ and tension T )

utt =
T

ρ
uxx (2)

with Neumann boundary conditions, i.e.,

ux(0, t) = 0, ux(l, t) = 0. (3)

(a) Prove energy conservation.

(b) Using energy conservation, show that the only solution to the initial
value problem with zero initial data, i.e., u(x, 0) = 0, ut(x, 0) = 0 for
0 6 x 6 l, is the solution u(x, t) ≡ 0.

3. Consider the wave equation on the interval with Dirichlet boundary con-
ditions {

utt = uxx, 0 < x < l,

u(0, t) = u(l, t) = 0.
(4)

(a) Find the separated solutions un = Xn(x)Tn(t), n > 1. In particular
solve the associated eigenvalue problem, assuming the eigenvalue λ
is positive, and solve the associated equation for T .

(b) Write down the general solution in terms of an infinite series and find
the solution of the initial value problem with initial conditions{

u(x, 0) = sin(πl x),

ut(x, 0) = 2π
l sin( 2π

l x).
(5)
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4. Consider the eigenvalue problem
−X ′′(x) = λX(x), 0 < x < 1,

X(0) = 0,

X ′(1) = X(1).

(6)

(a) Show that λ = 0 is an eigenvalue and compute the corresponding
eigenfunction.

(b) Let γ > 0 be any positive number that satisfies the equation

γ = tan(γ). (7)

Show that X(x) = sin(γx) is an eigenfunction corresponding to the
eigenvalue λ = γ2.

(c) Using Green’s second identity prove that eigenfunctions correspond-
ing to different eigenvalues are orthogonal.

G.3 Second test (modified)

Partial Differential Equations - AUC

Second exam (modified) - 31/10/2016

1. Consider the initial value problem for the wave equation on the half-line
0 < x <∞ with Dirichlet boundary conditions at x = 0:

utt = c2uxx 0 < x <∞
u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

u(0, t) = 0

(1)

(a) Define odd functions φo, ψo that extend φ, ψ to the real line and show
that the solution u(x, t) given by d’Alembert formula with initial data
φo, ψo is also odd. Show that such solution, restricted on the half
line x > 0, solves the i.v.p. (1).

(b) Write the formula for u(x, t) in terms of φ, ψ in the cases x > ct and
x < ct (assume t > 0).

(c) Sketch in (x, t)-plane the dependence domain for a point (x0, t0) with
t0 > 0, 0 < x0 < ct0.

2. Consider a solution u(x, t) to the wave equation on the interval [0, l] (de-
scribing a string of length l of linear mass density ρ and tension T )

utt =
T

ρ
uxx (2)

with Neumann boundary conditions, i.e.,

ux(0, t) = 0, ux(l, t) = 0. (3)
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(a) Prove energy conservation.

(b) Using energy conservation, show that the only solution to the initial
value problem with zero initial data, i.e., u(x, 0) = 0, ut(x, 0) = 0 for
0 6 x 6 l, is the solution u(x, t) ≡ 0.

3. Consider the wave equation on the interval with Dirichlet boundary con-
ditions {

utt = uxx, 0 < x < l,

u(0, t) = u(l, t) = 0.
(4)

(a) Find the separated solutions un = Xn(x)Tn(t), n > 1. In particular
solve the associated eigenvalue problem, assuming the eigenvalue λ
is positive, and solve the associated equation for T .

(b) Write down the general solution in terms of an infinite series and find
the solution of the initial value problem with initial conditions{

u(x, 0) = sin(2πl x),

ut(x, 0) = π
l sin(πl x).

(5)

4. Consider the eigenvalue problem
−X ′′(x) = λX(x), 0 < x < 1,

X(0) = 0,

X ′(1) = X(1).

(6)

(a) Show that λ = 0 is an eigenvalue and compute the corresponding
eigenfunction.

(b) Let γ > 0 be any positive number that satisfies the equation

γ = tan(γ). (7)

Show that X(x) = sin(γx) is an eigenfunction corresponding to the
eigenvalue λ = γ2.

(c) Using Green’s second identity prove that eigenvalues are real and
that the corresponding eigenfunctions can be chosen real.

G.4 Third test

Partial Differential Equations - AUC

Third exam - 25/11/2016

1. Let u(x, t) a solution of the heat equation defined on the rectangle

R = {(x, t) | 0 < x < 2, 0 < t < 3}. (1)

(a) Assume u(x, t) 6 1 for all (x, t) ∈ R. If we know that u(1, 1) = 1,
what can we say about the value u(1, 2) and why ? (Use the strong
maximum principle for u(x, t).)
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(b) Prove that the function v(x, t) = u(x, t) + εx2 cannot have a local
maximum in (the interior of) R. (This is part of the proof of the
weak maximum principle for u(x, t).)

2. Consider the following initial value problem for the heat equation on the
real line {

ut = uxx, −∞ < x < +∞, t > 0,

u(x, 0) = sin x
x .

(2)

(a) Write the solution u(x, t) using the Poisson integral formula. (You
do not need to compute the integral).

(b) Show that the solution u(x, t) is even in x at all times t > 0.

3. Solve the initial value problem for the heat equation on the interval with
Dirichlet boundary conditions

ut = kuxx 0 6 x 6 l, t > 0

u(x, 0) = sin πx
l ,

u(0, t) = 0,

u(l, t) = 0,

(3)

by looking for a separated solution of the form

u(x, t) = sin
(πx
l

)
T (t). (4)

4. (a) Recall the definition of Fourier transform of a function f(x).

(b) Compute the Fourier transform f̂(k) of the function

f(x) =

{
e−x x > 0,

0 x < 0.
(5)

(c) Using the inversion theorem for piecewise differentiable functions find

the value of the inverse Fourier transform of f̂(k) at x = 0 and
conclude that

lim
R→∞

∫ R

−R

1

1 + ik
dk = π. (6)

5. (a) Let f̂(k) be the Fourier transform of the function f(x). Prove the
formula for the the Fourier transform of f ′(x).

(b) Solve the following initial value problem{
ut = 1

2uxx + 4u t > 0, x ∈ R,
u(x, 0) = φ(x),

(7)

by applying the Fourier transform in the x variable, and solving the
resulting ODE. Give the solution as a convolution of two functions.

Useful formula: the Fourier transform of the rescaled Gaussian function

F [e−
a
2 x

2

] =

√
2π

a
e−

k2

2a , a > 0. (8)
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G.5 Fourth test

Partial Differential Equations - AUC

Fourth exam - 21/12/2016

1. Let u be a harmonic function on an open bounded connected set D ⊂ R2

and let ∂D denote the boundary of D.

(a) State the strong maximum and minimum principles for u.

(b) Let v be an harmonic function on D as above. Show that if |u(x)−
v(x)| 6 ε for some ε > 0 for all x ∈ ∂D, then |u(x) − v(x)| 6 ε for
all x ∈ D ∪ ∂D.

2. Find the harmonic function u(x, y) on the square

D = {(x, y) ∈ R2 | 0 < x < 1, 0 < y < 1}

such that

ux(0, y) = ux(1, y) = u(x, 0) = 0, u(x, 1) = cos(πx) + 2cos(3πx).

3. Consider the disk

D = {x = (x, y) ∈ R2 | |x| < 2}.

(a) Let u be a harmonic function on D whose boundary value is

u|r=2 = 1 + sin 5θ − cos 27θ,

where (r, θ) are the polar coordinates. What is u(0)?

(b) Find the harmonic functions u(r, θ) on the D that are of the form

u(r, θ) = R(r)Θ(θ) (1)

where (r, θ) are polar coordinates.

(c) Using the Poisson formula find the value at the point (r, θ) = (1, 0) in
D of the harmonic function u whose boundary value is u|r=2 = sinφ.

4. (a) If the Laplace transform of f(t) is given by F (s), derive the formula
for the Laplace transform of ebtf(t).

(b) The Laplace transform of tk for k integer is k!
sk+1 . Use the formula

derived in part (a) to obtain the Laplace transform of ebttk.

(c) Using the Laplace transform method, solve the initial value problem

y′′ + 4y′ + 4y = 6e−2tt, y(0) = 0, y′(0) = 0.

5. Find the regions in the xy plane where the equation

yuxx + 2uxy + xuyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.
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H Solutions Tests 2016

H.1 First test

1. Using linearity we have

c1L(u1) + c2L(u2) + L(v) = g. (1)

Setting c1 = c2 = 0 gives L(v) = g, which implies

c1L(u1) + c2L(u2) = 0. (2)

Setting c1 = 1, c2 = 0, or c1 = 0, c2 = 1, we conclude.

2. (a) Since the ODE does not depend explicitly on y, let’s reduce the order
by introducing the variable v = y′. We get:

v′ − 2

x
v − x2 = 0, (3)

which is a linear first order ODE with integrating factor

I = e−
∫

2
x dx = e−2 log x = x−2. (4)

Integrating the resulting exact equation we get the solution in implicit
form

x−2v − x = c1, (5)

therefore
v = x3 + c1x

2. (6)

To get the solution in y we integrate this equation, getting

y =
x4

4
+ c1

x3

3
+ c2. (7)

(b) Clearly the general solution is given by a particular solution to the

inhomogeneous equation (simply setting c1 = c2 = 0), that is x4

4 , plus
the general solution to the homogeneous equation, which is given by

a linear combination of the two solutions 1 and x3

3 .

Computing the Wronskian

W (1,
x3

3
) = det

(
1 x3

3
0 x2

)
= x2 6= 0 (8)

on the domain x > 0. Therefore the two solutions are linearly inde-
pendent.

3. (a) Let y = y(x) be a characteristic curve, then

0 =
d

dx
u(x, y(x)) = uy(y′ − (1 + x2)), (9)

therefore
y′ = 1 + x2, (10)

which by integration gives the equation of the characteristic curves

y(x) =
x3

3
+ x+ c. (11)
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(b)

u(x, y) = f(y − x− x3

3
) (12)

(c) Just take the derivatives.

(d) Imposing the condition at x = 0 we get

u(0, y) = f(y) = e−
y2

2 , (13)

therefore

u(x, y) = e−
(y−x− x

3

3
)2

2 . (14)

(e) Looking for a solution u(x, y) = g(x) one gets

g′(x) = cos(x), (15)

therefore u(x, y) = sinx is a particular solution of the inhomogeneous
equation. By the superposition principle we get the general solution

u(x, y) = f(y − x− x3

3
) + sin(x). (16)

4. (a) Using the d’Alembert formula it’s immediate to get

u(x, t) = sin(x− 2t) + ex+2t. (17)

(b) The right-moving part is the function in x−2t, while the left-moving
the function in x+ 2t.

H.2 Second test

1. (a) The even extension is defined as

φe(x) =

{
φ(x) x > 0,

φ(−x) x < 0,
(18)

and similarly for ψ. By a simple change of variable x → −x in the
d’Alembert formula

u(x, t) =
1

2
(φe(x+ ct) + φe(x− ct)) +

1

2c

∫ x+ct

x−ct
ψe(ζ)dζ (19)

one finds that u(−x, t) = u(x, t), hence u is even in x for all t. The
derivative of an even function is an odd function. Indeed taking the
derivative in x of u(−x, t) = u(x, t) one gets ux(−x, t) = −ux(x, t).
So it vanishes at x = 0 and satisfies the Neumann boundary condi-
tion. Clearly u(x, t) solves the wave equation and the initial condi-
tions on the positive real line, so it solves the i.v.p. (1).
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(b) For x > ct we have both x− ct > 0 and x+ ct > 0, so the even exten-
sions φe, ψe appearing in d’Alembert formula can be just replaced
with the corresponding φ, ψ, giving

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(ζ)dζ. (20)

For x < ct we have x+ ct > 0 but x− ct > 0, so we have to split the
integral in two parts, one with ζ > 0 and one with ζ < 0, which gives

u(x, t) =
1

2
(φ(x+ct)+φ(−x+ct))+

1

2c

∫ x+ct

0

ψ(ζ)dζ+
1

2c

∫ −x+ct

0

ψ(ζ)dζ.

(21)

(c) Sketch:

2. (a) Recall the definition of energy

E =

∫ l

0

(
1

2
ρu2

t +
1

2
Tu2

x)dx. (22)

Taking the t derivative we get

dE

dt
=

∫ l

0

(ρututt + Tuxuxt)dx. (23)

Using the wave equation the integrand becomes

T (utux)x, (24)

therefore
dE

dt
= T (utux)|l0 (25)

which vanishes because of the boundary conditions.

(b) The energy at t = 0 is zero, so it has to be zero at all times because of
energy conservation. But if E = 0 also the integrand has to be zero,
because it is the sum of two positive functions. Therefore ux = ut = 0
for all x and t, so u(x, t) is constant, and equal to zero.
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3. (a) This is solved in the book, section 4.1

(b) A linear combination of the separated solutions gives the general
solution of the b.v.p.

u(x, t) =
∑
n>1

sin
nπx

l

(
An cos

nπt

l
+Bn sin

nπt

l

)
. (26)

Setting t = 0 in this general solution, and in its t derivative, we get
sine Fourier series for the initial conditions

sin
πx

l
=
∑
n>1

An sin
nπx

l
, (27)

2π

l
sin

2πx

l
=
∑
n>1

Bn
nπ

l
sin

nπx

l
. (28)

Using orthogonality formulas we find An is 1 for n = 1 and is 0
otherwise; Bn is 1 for n = 2 and zero otherwise. The general solution
is therefore

u(x, t) = sin
πx

l
cos

πt

l
+ sin

2πx

l
cos

2πt

l
. (29)

4. (a) For λ = 0 the e.v. equation becomes X ′′ = 0, so has general solution
X = Ax+B. Imposing the boundary conditions we get that B = 0,
so the eigenfunction is X = x.

(b) Computing, for X = sin γx:

−X ′′ = −γ2 sin γx = −γ2X = −λX. (30)

We need to check the b.c.: X(0) = sin 0 = 0 and

X ′(1) = γ cos γ = tan γ cos γ = sin γ = X(1). (31)

So, X is indeed an eigenfunction with eigenvalue λ = γ2.

(c) Let X1, X2 be eigenfunctions corresponding with eigenvalues λ1, λ2.
Then the second Green’s identity says that

(λ1 − λ2)

∫ 1

0

X1X2dx = (−X ′1X2 +X1X
′
2)|10. (32)

The righthand side vanishes because of the b.c., hence (X1, X2) =∫ 1

0
X1X2dx is zero, i.e., the eigenfunctions are orthogonal.

H.3 Third test

1. (a) By the strong maximum principle a solution of the heat equation
cannot assume its maximum value in the interior of R, unless it is
constant. In this case u assumes the maximum value at (1, 1) so it is
constant and equal to 1. Therefore u(1, 2) = 1.
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(b) The function v(x, t) satisfies the diffusion inequality

vt − kvxx = −2εk < 0. (1)

If v(x, t) had a local maximum at the point (x, t) in the interior of
R, then at that point vt = 0 and vxx 6 0, and we would get a
contradiction with the diffusion inequality.

2. (a)

u(x, t) =
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t
sin y

y
dy. (2)

(b)

u(−x, t) =
1√
4πt

∫ ∞
−∞

e−
(−x−y)2

4t
sin y

y
dy (3)

= − 1√
4πt

∫ −∞
+∞

e−
(−x+y)2

4t
sin(−y)

−y
dy (4)

=
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t
sin y

y
dy (5)

= u(x, t). (6)

3. Substituting the separated solution in the heat equation we get

sin
(πx
l

)
T ′(t) = −k

(π
l

)2

sin
(πx
l

)
T (t), (7)

therefore T (t) satisfies

T ′(t) = −k
(π
l

)2

T (t), (8)

which is solved by

T (t) = Ce−k(
π
l )

2
t. (9)

Taking into consideration the initial condition we have that C = 1, hence
the solution is

u(x, t) = sin
(πx
l

)
e−k(

π
l )

2
t. (10)

4. (a)

f̂(k) =

∫ ∞
−∞

e−ikxf(x)dx. (11)

(b) Integrating an exponential we get

f̂(k) =
1

1 + ik
. (12)

(c) The inversion theorem for piecewise differentiable functions in this
case says that

lim
R→∞

∫ R

−R
eikx

1

1 + ik
dk =

1

2
(f(x+) + f(x−)), (13)

that for x = 0 gives the result.
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5. (a) Differentiating w.r.t. x the inversion formula f(x) = F−1[f̂(k)] we

get the desired result ikf̂(k).

(b) Taking the Fourier transform of the PDE we get

ût = (−1

2
k2 + 4)û, (14)

which has solution

û(k, t) = c(k)e(4− 1
2k

2)t. (15)

The initial condition at t = 0 fixes c(k) = φ̂(k). Applying the inverse
Fourier transform gives

u(x, t) = F−1[φ̂(k)e(4− 1
2k

2)t] = φ ∗ F−1[e(4− 1
2k

2)t]. (16)

The formula for the Fourier transform of the Gaussian function gives

F−1[e(4− 1
2k

2)t] =
1√
2πt

e4t− 1
2x

2

, (17)

therefore

u(x, t) =
e4t

√
2πt

∫ ∞
−∞

e−
(x−y)2

2t φ(y)dy. (18)
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H.4 Fourth test

1. (a) If u is not constant, the maximum (resp. minimum) of u is achieved
only on ∂D.

(b) We have that
− ε 6 u(x)− v(x) 6 ε (19)

for all x ∈ ∂D. Since both maximum M and minimum m of w = u−v
appear on ∂D, we have that M 6 ε and −ε 6 m. By definition of
maximum and minimum on D we conclude

− ε 6 m 6 u(x)− v(x) 6M 6 ε (20)

on D.

2. As usual, perform separation of variables, using only the homogeneous
boundary conditions, and consider separately the cases of positive, nega-
tive, and zero eigenvalue. The linear combination of all separated solutions
with arbitrary coefficients gives

u(x, y) =
A0

2
y +

∑
n>1

An cos(nπx) sinh(nπy). (21)

Imposing the remaining boundary condition allows to easily fix the coef-
ficients, getting

u(x, y) =
cos(πx) sinh(πy)

sinh(π)
+

2 cos(3πx) sinh(3πy)

sinh(3π)
. (22)

3. (a) The average of sinnθ and cosnθ for any integer n is zero. Therefore
the value of u at the origin is 1.

(b) See textbook p.165-6.

(c) Substituting in Poisson formula we get

u(1, 0) =
3

2π

∫ 2π

0

sinφ

5− 4 cosφ
dφ, (23)

which equals zero (e.g., because we can integrate on the symmetric
interval (−π, π) and the integrand is odd).

4. (a)
F (s− b) (24)

(b)
k!

(s− b)k+1
(25)

(c) Taking Laplace transform we get

Y =
6

(s+ 2)4
, (26)

therefore the solution is
y = t3e−2t. (27)

5. It is parabolic on the hyperbola xy = 1. It is hyperbolic in the region
containing the origin, and elliptic in the other two regions.
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