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a b s t r a c t

We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin–Novikov
type with D independent variables. We find that the second and third cohomology groups
are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the
deformation theory in the multivariable case is non-trivial.
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1. Introduction

Themultidimensional Dubrovin–Novikov (DN) type Poisson brackets were introduced by Dubrovin and Novikov in [1,2].
Let x = (x1, . . . , xD) be coordinates on the torus TD and u = (u1, . . . , uN) be variables on an open ball U ⊂ RN (or more

generally local coordinates on a smooth N-dimensional manifoldM). The Dubrovin–Novikov brackets are of the form

{ui(x), uj(y)} =

D
α=1


g ijα(u(x))∂xαδ(x − y) + bijαk (u(x))∂xαuk(x)δ(x − y)


(1)

were g ijα(u) and bijαk (u) are smooth functions over U , and δ(x − y) denotes the multidimensional Dirac delta function

δ(x − y) = δ(x1 − y1) · · · δ(xD − yD).

The fact that the brackets (1) are Poisson (i.e. that they are skew-symmetric and satisfy the Jacobi identity) imposes
several conditions on the functions g ijα(u) and bijαk (u).

Such conditions have been studied and are still being studied for different values of D, N by several authors. In particular
they have been related to certain geometric structures overM , since the seminal paper by Dubrovin and Novikov [1] which
states a one to one correspondence between the nondegenerate D = 1 Poisson brackets and flat contravariant pseudo-
Riemannian metrics. A general set of equations valid for all D, N has been obtained by Mokhov [3]; a classification of the
nondegenerate brackets for D = 2 exists for N = 2 [4] and N = 3, 4 [5], where it relies on the notion of Killing (1, 1)-
tensors; in special cases a classification can be obtained for D = 2 and arbitrary N , or for D = 3, N 6 3 [5], or again for
arbitrary D and N [4]. Very recently some first results on the classification of degenerate brackets have appeared [6,7].
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As pointed out in [8], at least in the scalar case, an important problem is to classify the dispersive deformations of such
brackets. Let us state this problem precisely in the multidimensional case.

Let A be the space of differential polynomials, i.e. formal power series in the variables ∂
k1
x1 · · · ∂

kD
xD u

i with coefficients
which are smooth functions of ui:

A = C∞(U)[[{∂
k1
x1 · · · ∂

kD
xD u

i with k1, . . . , kD > 0, (k1, . . . , kD) ≠ 0}]].

The standard degree deg on A counts the number of derivatives ∂xi in a monomial, i.e., it is defined by deg(∂k1
x1 · · · ∂

kD
xD u

i) =

k1 + · · · + kD.
We consider dispersive deformations of multidimensional DN brackets of the form

{ui(x), uj(y)}ϵ = {ui(x), uj(y)} +


k>0

ϵk


k1,...,kD>0
k1+···+kD6k+1

Aij
k;k1,...,kD

(u(x))∂k1
x1 · · · ∂

kD
xD δ(x − y) (2)

where Aij
k;k1,...,kD

∈ A and deg Aij
k;k1,...,kD

= k − k1 · · · − kD + 1.
The Miura-type transformations (of the second kind [9]) are changes of variables of the form

vi
= ui

+


k>1

ϵkF i
k

where F i
k ∈ A and deg F i

k = k. They form a group called Miura group.
The main problem is to classify the dispersive deformations (2) of the multidimensional DN type brackets {, } up to

equivalence. Two deformations are equivalent when they are related by aMiura transformation. A deformation {, }ϵ is called
trivial when it is equivalent to the undeformed DN type brackets {, }.

It is awell known general fact that the dispersive deformations are governed by the second and third Poisson cohomology
groups associated with the dispersionless Poisson bracket {, }. In particular the second Poisson cohomology classifies the
infinitesimal deformations,while the third Poisson cohomology encodes the obstructions to the extension of an infinitesimal
deformation to a full dispersive deformation. See Section 2 for the relevant definitions.

In the case of a single independent variable, D = 1, the Poisson cohomology of a DN type Poisson bracket has been
shown to vanish, in positive degree, by Getzler [10]. The main consequence of this result is that all deformations of one-
dimensional DN type Poisson brackets are trivial, i.e., they are Miura equivalent to their dispersionless limit. Independent
proofs of the triviality of the deformation problems in the case D = 1 have been obtained within different frameworks
[11,8,12]. Moreover, some first results for D = 2 have been published by one of the authors [13].

In the scalar case N = 1 the general form of a multidimensional DN type Poisson bracket is [3]

{u(x), u(y)} = g(u(x))c i
∂

∂xi
δ(x − y) +

1
2
g ′(u(x))c i

∂u
∂xi

(x)δ(x − y) (3)

where g(u) is a non-vanishing function and c i are constants, with i = 1, . . . ,D.
Our main result is the computation of the full Poisson cohomology of the Poisson bracket (3), in a quite implicit form,

see Theorem 9. As a consequence of this result, we obtain the cohomology groups of low degree, which are relevant for the
deformation theory, for some values of D, see Section 3. We find in particular that for D > 1 the second and third Poisson
cohomology groups are generically non-vanishing. Therefore (formal) infinitesimal deformations of (3) are still parametrized
by a class in H2(F̂ ), although this class is in general non-homogeneous in the standard degree, but no general statement
can be made about the possibility of extending such infinitesimal deformation to a full deformation of the form (2), even in
the homogeneous case. See Section 2.7 for further details.

Interesting problems to consider at this stage would be: the study of how particular examples of full dispersive Poisson
brackets of DN type in D > 1 fit in this scenario; and the formulation of classification and existence theorems for certain
subclasses of homogeneous deformations.

The paper is organized as follows: in Section 2 we introduce the main tools of formal multidimensional variational
calculus. In Section 3 we specialize to the case of a single dependent variable, and we prove our main Theorem. In Section 4
we explicitly compute a few homogeneous components of the first and second cohomology groups, using the formalism of
Poisson Vertex Algebras.

2. Functional variational calculus and deformations in the multidimensional case

In this Sectionwe introduce the basic notions of local multivectors, Schouten–Nijenhuis brackets, θ formalism andMiura
transformations in the case of D independent and N dependent variables. In Sections 2.1–2.5 we give the D > 1 version
of some basic constructions of [9,14], omitting the generalizations of most of the proofs, which will be addressed in a
subsequent publication. In Section 2.6 we introduce short sequences related with partial integrations, which are a peculiar
feature of theD > 1 case, andwe prove that they are exact, adapting the proof of exactness of the variational bicomplex [15].
In Section 2.7 we consider the relation between deformation theory and Poisson cohomology.
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2.1. Multi-index notation

Let us introduce the multi-index notation as follows. Denote by ξ1, . . . ξD the standard basis of the semiring Z := ZD
>0.

Let a multi-index S =
D

i=1 siξi be an arbitrary element of Z . The length of the multi-index S is |S| =
D

i=1 si. We denote
by Zj ⊂ Z the set of multi-indices S =

D
i=1 siξi with sj = 0. We denote by ∂S the operator ∂

s1
x1

· · · ∂
sD
xD . Sums over repeated

indices and multi-indices are assumed.

2.2. Local multivectors

Using the multi-index notation, the space of differential polynomials is

A = C∞(U)[[{uα,S, α = 1, . . . ,N, |S| > 0}]],

where we denote uα,S
= ∂Suα . The standard gradation deg on A is given by deg uα,S

= |S|. We denote Ad the homogeneous
component of degree d.

On A we define commuting derivations ∂xi for i = 1, . . . ,D by

∂xi =


α,S

uα,S+ξi
∂

∂uα,S
.

The elements of the quotient

F =
A

∂x1A + · · · + ∂xDA

are called local functionals. The standard gradation on A induces a standard gradation on F , since the operators ∂xi are
homogeneous. We denote the projection map from A to F as a multiple integral, which associates to f ∈ A the element D

f dDx

in F .
The variational derivative of a local functional F =

 D f dDx is defined as

δF
δuα

=


S

(−1)|S|∂S ∂ f
∂uα,S

.

One can easily prove that
∂

∂uα,S
, ∂xj


=

∂

∂uα,S−ξj
, if S =


i

siξi with sj > 0, (4)

and is equal to zero otherwise, and

δ

δuα
∂xi = 0. (5)

From this in particular it follows that the variational derivative of
 D f dDx does not depend on the choice of the density f .

A local p-vector P is a linear p-alternating map from F to itself of the form

P(I1, . . . , Ip) =

 D

Pα1,...,αp
S1,...,Sp

∂S1


δI1
δuα1


· · · ∂Sp


δIp
δuαp


dDx (6)

where Pα1,...,αp
S1,...,Sp

∈ A, for arbitrary I1, . . . , Ip ∈ F . We denote the space of local p-vectors by Λp
⊂ Altp(F , F ).

The following Lemma generalizes Lemma 2.1.7 of [9].

Lemma 1. Let Pα
∈ A. If D

α

Pα δI
δuα

dDx = 0

for all I ∈ A, then Pα
=
D

i=1 ciu
α,ξi for some ci ∈ R.
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2.3. The θ formalism

Let Â be the algebra of formal power series in the commutative variables uα,S , |S| > 0 and anticommutative variables
θ S
α , |S| > 0 with coefficients given by smooth functions on U , i.e.,

Â := C∞(U)


uα,S, |S| > 0


∪

θ S
α, |S| > 0


.

The standard gradation deg and the super gradation degθ of Â are defined by setting

deg uα,S
= deg θ S

α = |S|, degθ u
α,S

= 0, degθ θ S
α = 1.

We denote Âd, resp. Âp, the homogeneous components of standard degree d, resp. super degree p, while Â
p
d := Âd ∩ Âp.

Clearly Â0
= A.

The commuting derivations ∂xi for i = 1, . . . ,D are extended to Â by

∂xi =


α,S


uα,S+ξi

∂

∂uα,S
+ θ S+ξi

α

∂

∂θ S
α


.

Note that the kernel of ∂xi on Â is R.
We denote by F̂ the quotient of Â by the subspace ∂x1Â + · · · + ∂xDÂ, and by a multiple integral

 D
· dDx the projection

map from Â to F̂ . Since the derivations ∂xi are homogeneous, i.e., deg ∂xi = 1 and degθ ∂xi = 0, F̂ inherits both gradations
of Â.

Eqs. (4) and (5) hold and, similarly,
∂

∂θ S
α

, ∂xj


=

∂

∂θ
S−ξj
α

, if S =


i

siξi with sj > 0,

and is equal to zero otherwise. It follows that the variational derivative

δ

δθα

=


α,S

(−1)|S|∂S ∂

∂θ S
α

(7)

satisfies
δ

δθα

∂xi = 0.

Hence both variational derivatives (5) and (7) define maps from F̂ to Â.

Proposition 2. The space of local multi-vectors Λp is isomorphic to F̂ p for p ≠ 1. Moreover

Λ1 ∼=
F̂ 1

⊕i R

uα,ξiθα

∼=
Der′(A)

⊕i R∂xi
,

where Der′(A) denotes the space of derivations of A that commute with ∂xi , for i = 1, . . . ,D, and Der′(A) ∼= F̂ 1.

Remark 3. Let us give here some remark on the proof of this Proposition, following the argument of [9]. Notice that for
p = 0, the isomorphism is trivial, since F̂ 0

= F = Λ0. Let us assume instead that p > 1. Given P ∈ F̂ p, and arbitrary
I1, . . . , Ip ∈ F , let

ι(P)(I1, . . . , Ip) =
∂

∂θ
Sp
αp

· · ·
∂

∂θ
S1
α1

P · ∂S1


δI1
δuα1


· · · ∂Sp


δIp
δuαp


.

Clearly ι(P) is an p-alternating map from F to A, and it satisfies

ι(∂xiP)(I1, . . . , Ip) = ∂xi(ι(P)(I1, . . . , Ip)).

The desired map ι̃ from F̂ p to Λp is then defined by

ι̃

 D

P dDx


=

 D

ι(P) dDx.

Surjectivity of ι̃ is easy to see; indeed the local p-vector (6) is the image through ι of

P =
1
p!

Pα1,...,αp
S1,...,Sp

θ S1
α1

· · · θ
Sp
αp .
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In the case p = 1, an element P of F̂ 1 can be written uniquely as

P =

 D

Pαθα dDx

for Pα
∈ A. The map that sends P to

∂P =


S

∂SPα ∂

∂uα,S

defines an isomorphism F̂ 1 ∼= Der′(A). Notice that

ι̃(P)(I) =

 D

∂P(I) dDx.

Clearly, for each i, the derivation associated with P =
 D

α uα,ξiθα dDx corresponds to ∂P = ∂xi , therefore is in the kernel
of ι̃. From Lemma 1 it follows that the kernel of ι̃ is indeed generated by these elements.

It remains to show that ι̃ is injective for p > 2, which can be done essentially by adapting the proof given in [9] to the
present case. Since this argument relies on further technical lemmas on differential operators we prefer to skip it in the
context of this paper.

2.4. The Schouten–Nijenhuis bracket

The Schouten–Nijenhuis bracket
[, ] : F̂ p

× F̂ q
→ F̂ p+q−1

is defined as

[P,Q ] =

 D  δP
δθα

δQ
δuα

+ (−1)p
δP
δuα

δQ
δθα


dDx.

It is a bilinear map that satisfies the graded symmetry
[P,Q ] = (−1)pq[Q , P]

and the graded Jacobi identity
(−1)pr [[P,Q ], R] + (−1)qp[[Q , R], P] + (−1)rq[[R, P],Q ] = 0

for arbitrary P ∈ F̂ p, Q ∈ F̂ q and r ∈ F̂ r .
A bivector P ∈ F̂ 2 is a Poisson structure when [P, P] = 0. In such case dP := adP = [P, ·] squares to zero, as a

consequence of the graded Jacobi identity, and the cohomology of the complex (F̂ , dP) is called Poisson cohomology of P .

2.5. The differential on Â

Given an element P ∈ F̂ p we define the following differential operator on Â

DP =


S


∂S


δP
δθα


∂

∂uα,S
+ (−1)p∂S


δP
δuα


∂

∂θ S
α


. (8)

Since [DP , ∂xi ] = 0 for all i = 1, . . . ,D, the operator DP descends to an operator on F̂ which is given by the adjoint action
adP = [P, ·] of P on F̂ via the Schouten–Nijenhuis bracket, i.e.,

adP

 D

Q dDx


=

 D

DP(Q ) dDx,

for Q ∈ Â. This can be easily checked by integration by parts.

Remark 4. It can be proved by an explicit computation that

D[P,Q ] = (−1)p+1
[DP ,DQ ] (9)

which holds for P ∈ F̂ p and Q ∈ F̂ q, where the brackets on the right-hand-side represent the graded commutator that
induces a graded Lie algebra structure on the space of graded derivations to which DP belongs, see [14], i.e.,

[DP ,DQ ] = DPDQ − (−1)(p−1)(q−1)DQDP .

It follows that, if P ∈ F̂ 2 is such that [P, P] = 0, then D2
P = 0; in other words, if P ∈ F̂ 2 is a Poisson structure, then DP

squares to zero, hence (Â,DP) is a differential complex.
We will not prove the identity (9) here, since in our specific case, where P is given by formula (20), the fact that D2

P = 0
simply follows from a trivial computation, see next Section.
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2.6. Partial integrations

A crucial role in our construction is played by the following Lemma.

Lemma 5. The sequences

0 → Â/R
∂x1
−→ Â


dx1

−−→ F̂1 → 0

0 → F̂1/R
∂x2
−→ F̂1


dx2

−−→ F̂2 → 0

0 → F̂2/R
∂x3
−→ F̂2


dx3

−−→ F̂3 → 0
...

...
...

0 → F̂D−1/R
∂xD
−→ F̂D−1


dxD

−−→ F̂D → 0

(10)

where

F̂i =
Â

∂x1Â + · · · + ∂xiÂ

are exact.

Proof. The exactness of the first line is obvious: by quotienting out the kernel of ∂x1 , which is given by constants, we have
injectivity on the left side, while


dx1 just denotes the projection to the quotient F̂1, which is indeed surjective.

Let us consider the second line. The derivation ∂x2 on Â commutes with ∂x1 , hence defines a map on F̂1 which we denote
with the same symbol. Notice that

F̂1

∂x2 F̂1
=

Â

∂x1Â + ∂x2Â
= F̂2,

therefore surjectivity is guaranteed.
The same argument works for the rest of the lines, since it is easy to check that

F̂i

∂xi+1 F̂i
=

Â

∂x1Â + · · · + ∂xi+1Â
= F̂i+1.

It remains to be proved that the map induced by ∂xa on F̂a−1 has kernel given by R, for a = 2, . . . ,D. In order to do
this we reformulate this property as the vanishing of the cohomology of some auxiliary complex, and then we construct an
explicit homotopy contraction for that auxiliary complex that implies the vanishing of its cohomology.

The map induced by ∂xa on F̂a−1 has only constants in the kernel if and only if for any function f ∈ Â the conditions
∂xa f ∈ ∂x1Â + · · · + ∂xa−1Â and f is non-constant imply that f ∈ ∂x1Â + · · · + ∂xa−1Â. Consider the following complex:

0 → Ω0 dH
−→ Ω1 dH

−→ · · ·
dH
−→ Ωa−1 dH

−→ Ωa, (11)

where Ω j, 0 6 j 6 a, is the space of local differential j-forms with coefficients in Â/R, that is,

Ω j
:=


I⊂{1,...,a},|I|=j
I={i1<···<ij}

Â/R · dxi1 ∧ · · · ∧ dxij ,

and the differential dH is equal to
a

i=1 dx
i
∧ ∂xi . In terms of this complex, the condition ∂xa f = ∂x1g1 + · · · + ∂xa−1ga−1 is

the same as dHω = 0, where ω ∈ Ωa−1 is given by

ω :=


f

∂

∂(dxa)
−

a−1
i=1

gi
∂

∂(dxi)


dx1 ∧ · · · ∧ dxa.

The property that f ∈ ∂x1Â + · · ·+ ∂xa−1Â (and the similar statements for gi, i = 1, . . . , a− 1, obtained by relabeling of the
independent variables) is equivalent to ω ∈ dHΩa−2. That is, we have to prove that the auxiliary complex (11) is acyclic in
cohomological degree a − 1.

In order to do this, we revisit the argument of Anderson, cf. [15, Proposition 4.2 and 4.3]. While the horizontal rows of
the variational bicomplex that is considered in [15] are, in general, quite different from (11) (the meaning of the symbol θ
is completely different), the combinatorics of the differential dH is literally the same, which allows us to adapt the formulas
of Anderson.
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The first thing we need to do is to refine the standard gradation. Namely, we represent S ∈ ZD
>0, |S| > 0, as the sum

S = S ′
+ S ′′, where S ′

=
a

i=1 siξi and S ′′
=
D

i=a+1 siξi. This way we represent deg as the sum deg′
+ deg′′, where

deg′
= |S ′

| and deg′′
= |S ′′

|. Observe that both deg′′ and the super gradation degθ are preserved by the differential dH . This
means that we can split the complex (11) into the direct summands

0 →

Ω

p
d′′

0 dH
−→


Ω

p
d′′

1 dH
−→ · · ·

dH
−→


Ω

p
d′′

a−1 dH
−→


Ω

p
d′′

a
, (12)

where the coefficients have deg′′
= d′′ and degθ = p.

There are two different cases, p = 0 and p ≠ 0. In the case p = 0, we have no θs. Also, we consider the variables
uα,S as u(α,S′′),S′

, that is, we introduce a new index (α, S ′′) for the dependent variables, and we take into account only the
dependence on the independent variables x1, . . . , xa. In other words, we redefine the algebra A to be

C∞(U)[[u(α,S′′), α = 1, . . . ,N, |S ′′
| > 0]][[u(α,S′′),S′

, |S ′′
| > 0]],

where {u(α,S′′)
} is the new set of dependent variables (we allow S ′′

= 0 and identify u(α,0) with uα), {x1, . . . , xa} is the new
set of independent variables, and u(α,S′′),S′

= ∂S′

u(α,S′′). If we fix the degree deg′′, we still have a finite number of dependent
variables, and the only difference with the standard case is that we require our functions to be homogeneous polynomials
in some of them (as opposed to just smooth functions). This modification (and also the minor difference that we do not
consider explicit dependence on independent variables) is the only difference between the complex (12) for p = 0 and the
complex considered in the first half of [15, Proposition 4.3]. It is then straightforward to see that the argument of Anderson
proves that this complex is acyclic (up to cohomological degree (a − 1)).

It remains to prove that the complex (12) is acyclic in cohomological degree 6 (a − 1) for p > 0. In this case we
can follow [15, Proof of Proposition 4.2]. Anderson gives an explicit homotopy contraction operator that uses only the
combinatorics of indices of the variables ∂S′

θ S′′

α =: θ S′

(α,S′′)
, so we can also define it as an operator hp,i

:

Ω

p
d′′

i
→


Ω

p
d′′

i−1.
Since the bookkeeping of indices and notation in [15] is quite different from the one we use in this paper, let us rewrite the
homotopy contraction operator explicitly in our terms, cf. [15, Equation (4.13)]:

hp,i
:=

−1
p

a
j=1


(α,S′′)


f1,...,fa>0
g1,...,ga>0

fj + gj + 1

a − i + 1 +

a
ℓ=1

fℓ
·

a
ℓ=1


fℓ + gℓ

fℓ


·


a

ℓ=1

∂
fℓ
xℓ


◦ θ0

(α,S′′) ∧


a

ℓ=1

(−∂xℓ)
gℓ


◦

∂

∂θ

ξj+
a

i=1
(fi+gi)ξi

(α,S′′)

◦
∂

∂

dxj
 . (13)

Then the arguments of [15, Lemma 4.4 and Proof of Proposition 4.2] imply that (hp,i+1dH + dHhp,i)ω = ω for ω ∈

Ω

p
d′′

i,
p > 0 and i < a. This implies that for p > 0 the cohomology of the chain complex (12) in cohomological degree 6 (a − 1)
is equal to zero.

This completes the proof of the Lemma. �

2.7. Deformations of DN brackets and Poisson cohomology

Let us introduce the transformations

ui
→ ũi

=

∞
k=0

ϵkF i
k(u; uI), i = 1, . . . ,N (14)

on the space A, where F i
k ∈ Ak and

det


∂F i
0(u)
∂uj


≠ 0.

The transformations (14) form a group who is called the Miura group [8]. It can be regarded as the group of local
diffeomorphisms on the space A, whose Lie algebra is the algebra of the (translational invariant) vector fields on A. The
transformation of the 0th order coordinates ui is then lifted to the higher order jet variables ui,S . The action of the elements
of the Miura group is then naturally extended to the full space Â. An important subclass of Miura transformations, that
plays a central role in the theory of the deformations of DN brackets, are the so-called second kind Miura deformations [9],
for which F i

0 = ui.
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Definition 6. Given a Poisson bivector P0 ∈ F̂ 2, a nth order infinitesimal compatible deformation of P0 is a bivector
P = P0+

n
k=1 ϵkPk such that [P, P] = O(ϵn+1). The bracket associated to a deformedbivector by the rule {F ,G} = [[P, F ],G]

is then

{, }∼ = {, }0 +

n
k=1

ϵk
{, }k. (15)

In the DN case, where deg P0 = 1, the degree of each deformation deg Pk is k + 1.

Definition 7. A deformation of P0 is said to be trivial if there exists an element φ of the Miura group such that φ∗P = P0.
From Definition 6, this implies that φ must be of second kind. Equivalently, an infinitesimal deformation is trivial if
there exists an evolutionary vector field X such that [X, P0] = P . This is equivalent to say that {φ(u(x)), φ(u(y))}0 =

φ ({u(x), u(y)}∼) + O(ϵn+1) for a deformed bracket of degree n + 1.

As in the finite dimensional setting, the theory of deformations of DN brackets can be rephrased in terms of the
Poisson–Lichnerowicz cohomology. The main result of this paper is, indeed, the computation of the full cohomology for
N = 1 and arbitrary D DN brackets. It is then well known the relation between lower order cohomology groups and the key
elements of the deformation theory.

If P ∈ F̂ 2 and [P, P] = 0, then DP defined in (8) squares to 0. That means that it is possible to define a cochain complex

0 → Â0 DP
−→ Â1 DP

−→ Â2 DP
−→ · · ·

and its cohomology; moreover, since DP commutes with all the ∂xi the complex and the cohomology groups pass to the
quotient space F̂ .

We denote

Hp(Â) =
Ker


DP : Âp

→ Âp+1


Im

DP : Âp−1 → Âp


and

Hp(F̂ ) =
Hp(Â)

∂xiÂ + · · · + ∂xDÂ
=

Ker

dP : F̂ p

→ F̂ p+1


Im

dP : F̂ p−1 → F̂ p

 . (16)

The groupsH•(F̂ , dP) constitute the Poisson–Lichnerowicz cohomology in the infinite dimensional settingweare dealing
with. We identify the first cohomology group H1 with the symmetries of the Poisson bivector P that are not Hamiltonian,
and the second cohomology group H2 with the infinitesimal compatible deformations of the Poisson bracket defined by
the bivector P that are not trivial. Recalling the definition of dP , a symmetry X is an (evolutionary) vector field, namely a
derivation of F̂ which commutes with all {∂xi}, such that [P, X] = 0, a Hamiltonian vector field is a vector field of form
XH = [P,H] for H ∈ F̂ 0 a local functional, a compatible bivector P ′ is a bivector such that [P, P ′

] = 0, and a trivial
compatible bivector is such that P ′

= [P, Y ] for some vector field Y ∈ F̂ 1.
The gradation on Â defined in Paragraph 2.3 can be used to decompose the cohomology groups both on Â and F̂ . Wewill

denote, for instance, H2
2 (F̂ ) the first order (n = 1 in the expansion (15)) nontrivial compatible deformations of a Poisson

bivector of degree 1.

Remark 8. Spelling out the compatibility condition for the bivectors, one get a sequence of equations

[P0, P1] = 0
2[P0, P2] + [P1, P1] = 0

...

In particular, the first nonvanishing term of the expansion must be a compatible bivector in the Bihamiltonian sense, and
the possibility of extending the deformation from the first order to the following ones is related to the third cohomology
group.

Furthermore, if we have a bivector P =
n

k=0 Pk, deg Pk = k + 1, [P, P] = O(ϵn+1), we can extend it one order higher in
ϵ if and only if the following element of F̂ 3 happens to be dP0-exact:

[P1, Pn] + [P2, Pn−1] + · · · + [Pn, P1].

Note that the condition [P, P] = O(ϵn+1) implies that this element is dP0-closed. To this end it would be sufficient to have
H3

n+3(F̂ ) = 0, but unfortunately, as we see below, it is in general not the case for the DN-brackets.
However, once we have a particular extension to order ϵn+1 given by a bivector Pn+1 such that [P + Pn+1, P + Pn+1] =

O(ϵk+2) (for instance, we definitely have one equal to zero in the case P1 = · · · = Pn = 0), then we can describe explicitly
the space of all possible extensions up toMiura transformations of second kind. It is an affine space given by Pn+1 +H2

n+1(F̂).
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3. The Poisson cohomology in the scalar case

In this Section we consider the N = 1, or scalar, case.

3.1. Main result

Our main result can be formulated as follows. Let Θ be the polynomial ring R[{θ S, S ∈ (Z>0)
D−1

}]. The derivations ∂xi ,
i = 1, . . . ,D − 1 act on Θ in the obvious way. Denote by Hp

d (D) the homogeneous component of bi-degree (p, d) of

H(D) =
Θ

∂x1Θ + · · · + ∂xD−1Θ
.

Theorem 9. The Poisson cohomology of the Poisson bracket (3) in bi-degree (p, d) is isomorphic to the sum of vector spaces

Hp
d (D) ⊕ Hp+1

d (D).

The proof of this Theoremwill be given in the following subsections. The strategy is to compute first the cohomology of a
particular Poisson bracket, and then to show that the cohomology does not change under linear changes of the independent
variables. That allows us to extend the result to the whole class of Poisson brackets (3).

Let us first derive some consequences of Theorem 9. Let us start by an explicit description of the spaces Hp
d (D) for small

or large p:

Lemma 10. We have that

Hp
d (D) =


R d = 0, p = 0, 1,
0 d > 1, p = 0, 1,
0 d = 2, p = 2,
R(D−1

d ) d > 0, p = d + 1,
0 d > 0, p > d + 2.

Remark 11. The vanishing result in last line of the Lemma can be improved: Hp
d (D) is zero for any (p, d) in the range

D + l − 1
l


< p 6


D + l
l + 1


, 0 6 d < p(l + 1) −


D + l

l


(17)

for any l > 0.

Proof. For p = 0, 1 the statement is trivial.
For p > d + 2, it is easy to see that Θ

p
d = 0, therefore Hp

d (D) = 0 as well. By computing the minimal deg of a monomial
of degθ = p, one can also extend this vanishing result for Θ

p
d to the range given in (17).

For p = d + 1 a basis of Θd+1
d is given by

θ0θ ξi1 · · · θ ξid

with i1 < · · · < id and il = 1, . . . ,D − 1. It follows that

dimHd+1
d (D) = dimΘd+1

d =


D − 1

d


.

For p = d = 2 a generic element in Θ2
2

D−1
i,j=1


aijθ ξiθ ξj + bijθθ ξi+ξj


can always be canceled by a generic element in

D−1
i=1 ∂xiΘ

2
1 , which is of the form

D−1
i=1

∂xi


D−1
j=1

cijθθ ξj


=

D−1
i,j=1

cij

θ ξiθ ξj + θθ ξi+ξj


,

by the obvious symmetry properties of the matrices aij, bij, cij. �
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Remark 12. For D > 2 the dimension of Θp
d is given by

dimΘ
p
d =


p0,p1,...>0

p0+p1+···=p
p1+2p2+3p3+···=d


s>0

s+D−2
D−2


ps



which can be given in terms of a generating function as
p,d>0

dimΘ
p
d xpyd =


s>0

(1 + xys)(
s+D−2
D−2 ).

A straightforward application of Theorem 9 gives us the explicit form of the Poisson cohomology groups in several cases:

Corollary 13. We have that:

Hp
d (F̂ ) ∼=



R2 d = 0, p = 0,
R d = 0, p = 1,
0 d > 1, p = 0,
RD−1 d = 1, p = 1,
0 d = 1, p = 2,
R

1
2 (D−1)(D−2) d = 2, p = 2,

R(D−1
d ) d > 0, p = d + 1,

0 d > 0, p > d + 2.

Remark 14. The vanishing result in the last line actually generalizes to the set of bidegrees (17).

Remark 15. In the D = 1 case we have H(1) = Θ = R ⊕ Rθ0, therefore Theorem 9 implies that Hp
d (F̂ ) is isomorphic to

R2 for p = d = 0, to R for p = 1, d = 0, and vanishes otherwise, as in the scalar case of Getzler’s result [10].

Remark 16. For D = 2 we can provide a general formula for Hp
d (F̂ ). Indeed, in this case Θ = R[θ (i,0)

] and in particular Θ
p
d

is generated by the monomials θ (i1,0)θ (i2,0) · · · θ (ip,0) such that i1 + i2 + · · · + ip = d, ik > 0. The dimension of Θp
d is given by

the number of ways of writing d as the sum of p distinct nonnegative integers, regardless of the order. The result, in terms
of the partition function P(n, k) giving the number of ways of writing n as sum of k positive addends, is [16]

dimΘ
p
d = P


d + p −


p
2


, p


. (18)

Since Ker ∂x1 = R ≠ 0 only in Θ0
0 , the dimension of ∂x1Θ

p
d−1 for (p, d) ≠ (0, 1) is given by the same formula (18) with

d′
= d − 1.
Then we have:

dimHp
d (2) = P


d +

p(3 − p)
2

, p


− P

d − 1 +

p(3 − p)
2

, p


for (p, d) ≠ (0, 1) and dimH0
1 (2) = 0. The dimension of the cohomology group Hp

d (F̂ ) is obtained in a straightforward way
from Theorem 9 for D = 2. We can conveniently express it as a generating function

d>0

dimHp
d (F̂ ) xd = hp(x) + hp+1(x),

where
d>0

dimHp
d (D = 2) xd = hp(x) := x

p
2 (p−1)

p
i=2

(1 − xi)−1
+ xδp,0.

From the explicit form of P(n, k) for k = 2, 3 we can improve the results of Lemma 10

dimH2
d (D = 2) =


0 d = 2k,
1 d = 2k + 1,

dimH3
d (D = 2) =

0 d < 3,
k d = 4 + 6k,
k + 1 d = 3 + 6k, 5 + 6k 6 d 6 8 + 6k.
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Combining the two previous results we obtain:

dimH2
d (F̂ ) =

k d = 4 + 6k,
k + 1 d = 6 + 6k, d = 8 + 6k,
k + 2 d = 3 + 6k, d = 5 + 6k, d = 7 + 6k.

(19)

In particular it should be noticed that H2
d (F̂ ) ≠ 0 for all d > 4. Some explicit values are

d 0 1 2 3 4 5 6 7 8

dimH2
d (F̂ ) 0 1 0 2 0 2 1 2 1

dimH3
d (F̂ ) 0 0 0 1 0 1 2 1 2

Remark 17. For D > 2 we have no explicit formulas, but we expect Hp
d (D) to be generically non-trivial. Symbolic computer

calculations allow us to obtain, for example, for D = 3:

d 0 1 2 3 4 5 6 7 8

dimH2
d (F̂ ) 0 2 1 8 3 16 13 26 26

dimH3
d (F̂ ) 0 0 1 4 6 14 29 36 72

and for D = 4:

d 0 1 2 3 4 5 6

dimH2
d (F̂ ) 0 3 3 20 15 66 73

dimH3
d (F̂ ) 0 0 3 11 30 75 183

3.2. Cohomology in a special case

Let us consider the DN brackets with one dependent variable and D independent variables

{u(x), u(y)}ˆ = ∂xDδ(x − y),

which, in the θ formalism, corresponds to the bivector

P̂ =
1
2

 D

θθ ξD dDx ∈ F̂ 2.

In this Section we compute the Poisson cohomology of the bracket {, }ˆ, i.e., the cohomology of the complex (F̂ , dP̂), where
dP̂ = [P̂, ·].

Let

∆ := DP̂ =


S

θ S+ξD
∂

∂uS
, (20)

be the differential operator on Â associated with P̂ defined in (8). Clearly, ∆ squares to zero. Moreover, this operator
commutes with ∂x1 , . . . , ∂xD , therefore it induces a differential on each of the spaces F̂1, . . . , F̂D. In particular, it is obvious
that on F̂D = F̂ this operator coincides with dP̂ .

With the differentials induced by ∆ on Â, F̂1, . . . , F̂D, the short exact sequences (10) become short exact sequences of
complexes.Wewill use the associated long exact sequences in order to compute the cohomology of F̂1, . . . , F̂D. Since all the
cohomology groups that we consider are to be understood with respect to the differential induced by ∆, we will generally
refrain from indicating it all the time.

Recall that we denote by ZD the sub-semiring of Z that consists of multi-indices of the form S =


i siξi with sD = 0.

Lemma 18. We have that H(Â) = R[{θ S, S ∈ ZD}].

Proof. Under the identification θ S+ξD ↔ duS , S ∈ Z , the operator ∆ turns into the de Rham differential on the differential
forms in uS , S ∈ Z , hence its cohomology is given by the degree 0 forms constant in uS , S ∈ Z , that is, by all elements of Â
independent of uS and θ S+ξD , S ∈ Z . These are the polynomials in θ S , S ∈ ZD. �
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For D = 1 we have H(Â) = R ⊕ Rθ , as in [9,14].
As before, we denote the polynomial ringR[{θ S, S ∈ ZD}] byΘ . It is important to stress that the polynomials in θ S , S ∈ ZD,

are indeed representatives of cohomology classes in H(Â).

Proposition 19. We have:

H(F̂i) =
Θ

∂x1Θ + · · · + ∂xiΘ

for i = 1, . . . ,D − 1.

Proof. Let us start by considering the short exact sequence

0 → Â/R
∂x1
−→ Â


dx1

−−→ F̂1 → 0,

which induces a long exact sequence in cohomology

Hp
d−1(Â/R)

∂x1
−→ Hp

d (Â)


dx1

−−→ Hp
d (F̂1) → Hp+1

d (Â/R)
∂x1
−→ Hp+1

d+1 (Â).

By Lemma 18, the cohomology classes in H(Â), and of course in H(Â/R), are represented by elements of Θ , i.e., by
polynomials in θ S with S ∈ ZD. The derivations ∂x1 , . . . , ∂xD−1 map such polynomials to polynomials of the same form,
hence their action on the cohomology coincides with their natural action on Θ . It clearly follows that the kernel of

Hp+1
d (Â/R)

∂x1
−→ Hp+1

d+1 (Â) is equal to zero.
The Bockstein homomorphism Hp

d (F̂1) → Hp+1
d (Â/R) is therefore the zero map, and we can conclude that Hp

d (F̂1) is the
quotient of Hp

d (Â) by the image of ∂x1 . So, we have

Hp
d (F̂1) ∼=

Hp
d (Â)

∂x1H
p
d−1(Â)

∼=
Θ

p
d

∂x1Θ
p
d−1

,

which is precisely the assertion of the Proposition for F̂1.
Let us now prove the same statement for F̂i, i = 2, . . . ,D − 1, by induction. The short exact sequence

0 → F̂i−1/R
∂xi
−→ F̂i−1


dxi

−−→ F̂i → 0

induces the long exact sequence in cohomology

Hp
d−1(F̂i−1/R)

∂xi
−→ Hp

d (F̂i−1)


dxi

−−→ Hp
d (F̂i) → Hp+1

d (F̂i−1/R)
∂xi
−→ Hp+1

d+1 (F̂i−1).

Notice that the map ∂xi : H(F̂i−1/R) → H(F̂i−1) is given, by inductive assumption, by

∂xi :
Θ

∂x1Θ + · · · + ∂xi−1Θ + R
→

Θ

∂x1Θ + · · · + ∂xi−1Θ
. (21)

Lemma 20. The kernel of the map (21) is equal to zero.

Proof. We can follow the proof of Lemma 5. By the same argument as there, we reduce the statement of the lemma to the
vanishing of the cohomology of a certain complex, where we have an explicit homotopy contraction given by exactly the
same formula as in Eq. (13). �

Since the kernel of the map (21) is equal to zero, the Bockstein homomorphism vanishes, and therefore we can conclude
that

H(F̂i) ∼=

Θ

∂x1Θ+···+∂xi−1Θ

∂xi


Θ

∂x1Θ+···+∂xi−1Θ

 ∼=
Θ

∂x1Θ + · · · + ∂xiΘ
. �

In particular, the previous Proposition implies that Hp
d (F̂D−1) is a finite dimensional vector space, whose dimension one

can compute explicitly for each choice of p, d,D. Due to its importance we denote it by Hp
d (D), which is then the degree

(p, d) component of

Θ

∂x1Θ + · · · + ∂xD−1Θ
.
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Finally we can compute the Poisson cohomology in the scalar case:

Theorem 21. We have that Hp
d (F̂ ) ≃ Hp

d (D) ⊕ Hp+1
d (D).

Proof. The short exact sequence

0 → F̂D−1/R
∂xD
−→ F̂D−1


dxD

−−→ F̂D → 0

induces in cohomology the exact sequence

Hp
d−1(F̂D−1/R)

∂xD
−→ Hp

d (F̂D−1)


dxD

−−→ Hp
d (F̂D) → Hp+1

d (F̂D−1/R)
∂xD
−→ Hp+1

d+1 (F̂D−1). (22)

It is easy to check that, for a ∈ Θ ,

∂xDa = ∆

S

uS ∂a
∂θ S

,

hence the map ∂xD sends any element of Θ , considered as a subspace of Â, to a ∆-exact element of Â. This implies that the
operator induces by ∂xD on the cohomology of Â is equal to zero, and therefore it is also equal to zero on the cohomology of
F̂i, i = 1, . . . ,D − 1. The long exact sequence (22) is then equivalent to the collection of short exact sequences

0 → Hp
d (F̂D−1) → Hp

d (F̂D) → Hp+1
d (F̂D−1/R) → 0,

for p > 0, d > 0. This implies that Hp
d (F̂D) ≃ Hp

d (F̂D−1) ⊕ Hp+1
d (F̂D−1). �

3.3. Change of independent variables

In Section 3.2 we have proved a theorem about the Poisson cohomology for the bracket {u(x), u(y)} = ∂xDδ(x − y). On
the other hand, the generic nondegenerate Poisson bracket (3) has the form, when written in flat coordinates,

{u(x), u(y)} =

D
i=1

c i
∂

∂xi
δ(x − y). (23)

Let us denote ∆ the Poisson bivector associated to the bracket (23).
In this Section we prove that the cohomology groups for the bracket (23) are isomorphic to the ones we computed in the

previous one, and hence that Theorem 9 holds for all the nondegenerate scalar DN brackets.

Lemma 22. By a linear change of independent variables (x1, . . . , xD) the bracket (23) can be brought to the form

{v(x̃), v(ỹ)} = ∂x̃Dδ(x̃ − ỹ). (24)

Proof. Under a linear change of coordinates x → x̃ = Jx, with J a constant D × D matrix, the derivations ∂x = {∂xi} change
according to ∂x → ∂x̃ = (J−1)T∂x. For the D-dimensional Dirac’s delta function to be invariant, we require in addition that
det J = 1. Introducing the D-dimensional vector C = (c1, . . . , cD) we have to solve the algebraic set of equations J · C = ξD.
We get D equations for D2

− 1 entries of the matrix J . Hence, the solution is not unique but it always exists. �

We will denote ∆̃ the Poisson bivector defining the bracket (24).

Lemma 23. The cohomology groups Hp
d (F̂ , ∆) are isomorphic to Hp

d (F̂ , ∆̃).

Proof. The same transformation law ∂x → ∂x̃ = (J−1)T∂x applies to the variables uξi = ∂xiu and θ ξi . Since J is constant, the
higher order derivatives leave it unaffected, in such a way that the transformation law is tensorial

uI
→ ũI

=

(J−1)T

|I|
uI ′

where |I| = k1 + · · · + kd and |I| = |I ′|. More precisely, we have

ũ(k1,...,kD)
=

(J−1)T

i1
1 · · ·


(J−1)T

ik1
1


(J−1)T

ik1+1
2 . . .


(J−1)T

i|I|
D

∂ |I|

∂xi1 . . . ∂xi|I|
u.

Moreover, the partial derivatives with respect to the jets transform with JT , so that the differential ∆ is transformed, being
homogeneous of differential order 1, as (J−1)T∆. Under the change of independent variables, Âp

d → Â
p
d for any component

of bidegree (p, d).
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Since J is invertible and the change of coordinates does not change the differential order of the jets, there exists an
isomorphism between the kernels and the images of ∆ : Â

p
d → Â

p
d+1 and ∆̃ : Â

p
d → Â

p
d+1. Hence the quotient spaces

Hp
d (∆, Â) and Hp

d (∆̃, Â) are isomorphic.
Moreover, the change of independent variable leaves the space F̂ invariant. Let us consider the quotient operation

F̂ =
Â

∂x1Â + · · · + ∂xDÂ
.

The change of independent coordinates maps each partial derivative to a linear combination of all the D derivatives

∂xi →

(J−1)T∂x


i =


j

∂xj

∂ x̃i
∂xj .

Since J is nondegenerate, however, Span(∂x̃Â) is the same as Span(∂xÂ), which proves the claim.
Eq. (16) reads

Hp
d (F̂ ) ∼=

Θ
p
d

∂x1Θ
p
d−1 + · · · + ∂xDΘ

p
d−1

whereΘ
p
d = Hp

d (Â). The linear change of independent coordinates, as already discussed,maps the numerator of the quotient
to an isomorphic space. For the denominator we have

∂x1Θ
p
d−1 + · · · ∂xDΘ

p
d−1 → ∂x̃1Θ̃

p
d−1 + · · · ∂x̃DΘ̃

p
d−1 = ∂x1Θ̃

p
d−1 + · · · ∂xDΘ̃

p
d−1

∼= ∂x1Θ
p
d−1 + · · · ∂xDΘ

p
d−1.

Since both the numerator and the denominator of the quotient Hp
d (F̂ ) are mapped to isomorphic spaces, so is the quotient

itself. This allows us to extend Theorem 9 to all the nondegenerate scalar DN brackets. �

4. Direct computation of some cohomology groups

In this section we show how one can explicitly compute some cohomology groups Hp
d (F̂ , ∆) using the formalism of

Poisson Vertex Algebras [17]. The notion of Poisson Vertex Algebra was introduced as an algebraic framework to deal with
evolutionary Hamiltonian PDEs with one spatial variable, but an extension to D-dimensional equations is straightforward
and has already been exploited to compute some cohomology groups for (D = 2,N = 2) DN brackets [13].

Definition 24. A (D-dimensional) Poisson Vertex Algebra (PVA) is a differential algebra (V, {∂i}
D
i=1) endowed with D

commuting derivations and with a bilinear operation {·λ ·} : V ⊗ V → R[λ1, . . . , λD] ⊗ V called the λ bracket satisfying
the following set of properties:

(1) {∂ifλg} = −λi{fλg}
(2) {fλ∂ig} = (∂α + λi) {fλg}
(3) {fλgh} = {fλg}h + {fλh}g
(4) {fgλh} = {fλ+∂h}g + {gλ+∂h}f
(5) {gλf } = −→{f−λ−∂g} (PVA-skewsymmetry)
(6) {fλ{gµh}} − {gµ{fλh}} = {{fλg}λ+µh} (PVA-Jacobi identity).

We use a multi-index notation λI
= λ

i1
1 λ

i2
2 · · · λ

iD
D for I = (i1, i2, . . . , iD). The terms in the RHS of property 4 are to be

read, if {fλh} =


I B(f , h)Iλ
I , as {fλ+∂h}g =


I B(f , h)I(λ + ∂)Ig =


I B(f , h)I(λ1 + ∂1)

i1 · · · (λD + ∂D)
iDg . Similarly, the

skewsymmetry property in extenso is


I B(g, f )Iλ
I
= −


I(−λ − ∂)IB(f , g)I .

When we consider V = A the algebra of differential polynomials and identify the ‘‘total derivations’’ ∂xi with ∂i, the set
of axioms for the PVA translates into a practical formula that gives the bracket between two elements of A in terms of the
bracket between the so-called generators uα:

{fλg} =


α,β=1...,N
L,M∈ZD

>0

∂g

∂uβ

M

(λ + ∂)M{uα
λ+∂u

β
}(−λ − ∂)L

∂ f
∂uα

L
. (25)

Themain reasonwhy the notion of a PoissonVertexAlgebra is relevant anduseful for the study of the Poisson cohomology
is that there exists an isomorphism between the Poisson Vertex Algebras and the Poisson brackets on the space of local
functionals. In particular, given the λ bracket of a PVA we have that

f ,


g


=


{fλg}|λ=0
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and, given a Poisson bracket in the space of the local densities A, {uα(x), uβ(y)} =


I B
αβ

I (u(x); uL(x))∂Iδ(x − y), we can
define a λ bracket

{uα
λu

β
} =


I

Bβα

S (u; uL)λ
S .

Moreover, an evolutionary Hamiltonian PDE of form ut = {

h, u} is mapped to ut = {hλu}|λ=0. The advantage of working

with PVAs rather than on local functionals is that there is no need to integrate – or, equivalently, to perform the quotient
from A to F – since the properties (5) and (6) encode the skewsymmetry and the Jacobi identity for the bracket after the
integration. This allows to perform explicitly computations, a few examples of which we will now demonstrate.

4.1. Symmetries of the bracket

The λ bracket is equivalent to the Poisson bracket defined by the bivector ∆ =
1
2θθ ξD is {uλu} = λD. As we have already

discussed in Section 2.4, the elements of the first cohomology group H1(F̂ , ∆) are the symmetries of the bracket that are
not Hamiltonian, namely the evolutionary vector fields

X =


I

∂IX(u; uL)
∂

∂uI

satisfying

X({uλu}) = {X(u)λu} + {uλX(u)} (26)

of form different from

X(u) = {hλu}|λ=0.

Let us compute H1
0 and H1

1 and H1
2 for generic D, showing the agreement with the results of Corollary 13.

For H1
0 we want to consider an evolutionary vector field whose component X depends only on u. Since the bracket

between the generators u is constant, the LHS of (26) vanishes; computing the RHSwith the help of formula (25) and setting
it equal to 0 immediately gives that X must be a constant. Given the form of the Poisson bivector, we cannot have any
constant Hamiltonian vector fields; thus, H1

0 = R.
To compute H1

1 we are interested in vector fields of first degree, namely of form X =
D

i=1 X
i(u)uξi . Imposing the

condition of symmetry does not give any condition onXD but forcesX i for i = 1, . . . ,D−1 to be constants. On the other hand,
if we take a generic Hamiltonian density of degree 0, i.e., a function h(u), its Hamiltonian vector field will be Xh = h′(u)uξD ,
where XD

= h′ can be arbitrary. This means that the D − 1 constants only are elements of H1
1 = RD−1.

In principle, computing any component of the first cohomology group means performing the same computations as the
ones for the first two. However, they become more and more involved with the growing of the degree (and hence of the
differential order). Another advantage of the formulation of the problem in terms of PVAs is that the computations are
straightforward and can be performed by a computer. Computing (26) for a degree two evolutionary vector field, whose
component is X =

D
a,b=1 X

ab
1 uξauξb + Xab

2 uξa+ξb , we get that the necessary condition is that X1 = X2 = 0 for all (a, b). This
means that H1

2 = 0.

4.2. Deformations of the bracket

As already discussed, the second cohomology group classifies the compatible infinitesimal deformations of the λ bracket
associatedwith the Poisson bivector∆ that cannot be obtained by aMiura transformation.Wewill demonstrate a few results
for the case D = 2. Definition 6, in terms of λ bracket, translates into considering a deformed bracket

{·λ ·} = {·λ ·}∆ + ϵ{·λ ·}
∼

and requiring that it satisfies properties (5) and (6) of the PVAs up to the order ϵ. Since {·λ ·}∆ is constant, it is enough to
impose the skewsymmetry of {·λ ·}

∼ and

{uλ{uµu}∼}∆ + {uµ{uλu}∼}∆ = {{uλu}∼λ+µu}∆. (27)

The form of the deformed bracket we choose depends on which component of the second cohomology group we are
interested in: when computing H2

d we will consider homogeneous λ brackets of degree d (as for the gradation on Â, we
consider degλI

= |I| and deg{uλu} = deg(B(u; uL)Iλ
I) = deg B + |I|). Property 5 prevents the existence of nontrivial

elements in H2
0 , since there cannot be skewsymmetric brackets of form {uλu} = A(u).

For H2
1 we consider brackets of form {uλu}∼ =

2
a=1 2A

a(u)λa + Aa′uξa—we have already implemented the skewsym-
metry of the deformation. Computing condition (27) for this bracket does not give any constraint on A2 but implies that
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A1 is constant. Let us consider a generic Miura transformation that gives rise to a bracket of degree one: since ∆ is degree
one as well, the transformation must be of degree 0, so u → U = u + ϵF(u). We get

{UλU}∆ = {uλu}∆ + ϵ

2F ′(u)λ2 + F ′′(u)uξ2


+ O(ϵ2).

This computation shows that we can never get from a Miura transformation a bracket of form {uλu} = λ1, which is
compatible with {·λ ·}∆. This means that H2

1 = R.
We can proceed similarly for H2

2 ; in this case a general deformed bracket of degree 2 will be

{uλu}∼ =


a,b

Aabλaλb + Babλauξb + Cabuξauξb + Dabuξa+ξb .

Note that, by definition, A, C , and D are symmetric in the indices (a, b). Imposing skewsymmetry we find the relations

Aab
= 0,

Cab
=

1
4


Bab′

+ Bba′


,

Dab
=

1
4


Bab

+ Bba .
We now impose condition (27) on the bracket and find that the parameters Bmust satisfy the set of equations

B11
= 0,

B12
+ B21

= 0,

B22
= 0.

In other words, all the compatible infinitesimal deformations of ∆ of degree 2 are parametrized by a single function
B(u) = B12 according to the given prescription. Any of these compatible deformations can be obtained from ∆ by the
Miura transformation

u → U = u − ϵuξ1

 u

B(s)ds

which exists for any function B of a single variable. This means that H2
2 = 0, in agreement with formula (19).
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