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0. Introduction

The theory of Frobenius manifolds [6], originating as a geometric formulation of the 
associativity equations of two-dimensional topological field theory [16,5], has proven to 
be an important tool in the study and classification of bi-Hamiltonian tau-symmetric 
integrable hierarchies of PDEs with one spatial variable [9].

The possibility of extending the Frobenius manifolds techniques to the realm of in-
tegrable PDEs with two spatial variables has been recently proposed in [3] where, in 
collaboration with B. Dubrovin, we have constructed an infinite-dimensional Frobenius 
manifold naturally associated with the bi-Hamiltonian structure of the dispersionless 2D 
Toda hierarchy. In this work we further develop the program outlined in [3].

First we show that the insights coming from the theory of Frobenius manifolds allow 
us to solve the problem of finding an extension of the dispersionless 2D Toda hierarchy. 
This problem has been open since the introduction of the extended [4] and extended 
bigraded [2] Toda hierarchies, which are characterized by extra “logarithmic” flows. Such 
flows are essential in the framework of [9] and for the description of Gromov–Witten 
potentials [10,12], but cannot be obtained by reduction of the 2D Toda flows of [15,14]. 
To achieve this extension we assume certain analytical properties of the Lax symbols 
λ(z), λ̄(z). First we require that, in contrast with the usual approach of e.g. [14], they are 
not just formal power series but genuine holomorphic functions on the exterior/interior 
part of the unit circle with simple poles at 0/∞ respectively. This requirement stems from 
the necessity of giving a precise meaning to products like λp(z)λ̄q(z) which are ill-defined 
in the case of formal power series. We need to consider however not only polynomial 
expressions of λ(z) and λ̄(z) but also logarithms. While in the case of extended Toda 
hierarchies [4,2] the introduction of logarithmic flows does not present serious problems 
(as one can define logarithms of formal power series as in [11]), in the case of the 2D 
Toda hierarchy this straightforward approach is not satisfactory. The correct insights 
come by considering the relationship of this hierarchy with the Frobenius manifold M0
constructed in [3]. It turns out that we have to consider logarithms not only of λ(z), λ̄(z)
but also of w(z) = λ(z) + λ̄(z). To make sense of these we impose further conditions on 
the winding numbers of the analytic curves obtained by restricting these functions to 
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the unit circle in the complex plane. These conditions define an open set M1 in the space 
of pairs of holomorphic Lax symbols. The extended dispersionless 2D Toda hierarchy is 
then defined as a family of commuting bi-Hamiltonian vector fields on the loop space 
LM1 which admit a Lax formulation and include the usual flows of the dispersionless 
2D Toda hierarchy.

The main motivation for the definition of this hierarchy comes from the construc-
tion [3] of the infinite-dimensional semisimple Frobenius manifold M0 associated with 
the standard Poisson pencil of the 2D Toda hierarchy.1 The Frobenius manifold M0 is 
defined on the space of pairs of holomorphic Lax symbols λ(z), λ̄(z) with certain addi-
tional conditions (ensuring the invertibility of the metric η and the well-posedness of the 
Riemann–Hilbert problem defining the flat coordinates). We will further assume that 
λ(z), λ̄(z) satisfy the winding numbers condition mentioned above, i.e. we regard M0 as 
an open subset of M1.

It is well-known that Frobenius manifolds are naturally associated with a certain 
class of bi-Hamiltonian dispersionless integrable hierarchies. This is the first of all ap-
parent from the fact that any Frobenius manifold M is endowed with a pencil of flat 
metrics and, consequently, with two compatible hydrodynamic type Poisson structures 
{, }1, {, }2 on its loop space [9]. Moreover a set A(M) of Hamiltonian densities (which 
define Hamiltonians on LM , in involution with respect to the first Poisson structure 
{, }1) is naturally associated with the Frobenius manifold M . One can single out a dis-
tinguished basis of A(M), by constructing a basis of deformed flat coordinates, i.e. of 
horizontal sections of the basic geometric object associated with M , the deformed flat 
connection ∇̃. Such distinguished basis is fixed by solving in a normal form (Levelt form) 
the isomonodromic matrix-valued linear system on the deformation parameter ζ in the 
C-plane. The corresponding Hamiltonian flows define the so-called Principal hierarchy. 
Here we will not review in detail these Frobenius manifold constructions but rather refer 
the reader to [7,9].

In the second part of this article we construct the deformed flat connection ∇̃ of 
the Frobenius manifold M0 and we explicitly solve the associated deformed flatness 
equations. We show that the deformed flat coordinates are indeed a Levelt system, thus 
we obtain the Principal hierarchy of M0, which coincides with the extended dispersionless 
2D Toda hierarchy, when restricted to LM0.

Since the Frobenius manifold M0 has a resonant spectrum, the normal form of the 
fundamental solution of deformed flatness equation in the ζ-plane is not univocally de-
termined but admits an arbitrariness. We exploit such arbitrariness to provide a set of 
deformed flat coordinates, and a related set of Hamiltonian densities defining the princi-
pal hierarchy, which satisfy the orthogonality (50). In this way we construct a principal 
hierarchy with all the good properties expected from the finite-dimensional case.

Let us now state more precisely our results.

1 Recently this construction has been generalized to other Poisson pencils [18], obtaining a family of 
Frobenius manifolds parametrized by two positive integers (n, m).
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The usual Lax formulation of the dispersionless 2D Toda hierarchy is given in terms 
of two formal Laurent series, the Lax symbols

λ(z) = z + u0 + . . . , λ̄(z) = ū−1z
−1 + ū0 + . . . ,

and Lax equations (3) which define an infinite set of commuting vector fields on the 
loop space of formal Lax symbols. In order to define a larger set of flows on this loop 
space we need to impose some analyticity conditions. First we require that, instead of 
formal power series, λ(z), λ̄(z) are “holomorphic Lax symbols”, i.e. λ(z), resp. λ̄(z), is a 
holomorphic function on a neighborhood of closure of the exterior, resp. interior, part of 
the unit circle in Riemann sphere C ∪ {∞} admitting a simple pole at ∞, resp. 0, with 
the normalization condition λ(z) = z +O(1) for |z| → ∞. Second we impose a “winding 
numbers condition”, namely we require that the functions λ(z), λ̄(z) and w(z) := λ(z) +
λ̄(z), when restricted to the unit circle |z| = 1, define analytic curves in C× := C\{0}
which have winding number around the origin respectively equal to 1, −1 and 1. We 
denote by M1 the space of pairs of holomorphic Lax symbols satisfying the winding 
numbers condition.

The dispersionless 2D Toda equations define evolutionary flows on pairs of holomor-
phic Lax symbols depending smoothly on the variable x, hence, in particular, on the 
loop space of M1,

LM1 = C∞(S1,M1).

We define the extended dispersionless 2D Toda hierarchy as a set of commuting flows on 
LM1 which include the usual 2D Toda flows. We summarize the first part of our results 
in the following theorem.

Theorem. Let Qα̂,p, for α̂ ∈ Ẑ = Z ∪ {u, v} and p � 0, be functions of λ, λ̄ defined by

Qα,p = − (λ + λ̄)α+1(λ̄− λ)p

(α + 1)(2p)!! for α �= −1,

Q−1,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp − 1

)
− (λ̄− λ)p

(2p)!! ,

Qv,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp − 1

)
+ λ̄p

p!

(
log

(
λ̄(λ + λ̄)

)
− cp − 1

)
,

Qu,p = λ̄p+1

(p + 1)!

where cp = 1 + · · · + 1
p are the harmonic numbers (with c0 = c−1 = 0).

The Lax equations

∂λ

∂tα̂,p
= {−(Qα̂,p)−, λ},

∂λ̄

∂tα̂,p
= {(Qα̂,p)+, λ̄},

define a tau-symmetric hierarchy of commuting flows on the loop space of M1.
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These flows admit a bi-Hamiltonian formulation with respect to the dispersionless 2D 
Toda Poisson brackets {, }1 and {, }2

∂

∂tα̂,p
· = {·, Hα̂,p}1

with recursion relations

{·, Hα,p}2 = (α + p + 2){·, Hα,p+1}1,

{·, Hv,p}2 = (p + 1){·, Hv,p+1}1 + 2{·, Hu,p}1,

{·, Hu,p}2 = (p + 2){·, Hu,p+1}1

for p � −1, and Hamiltonians

Hα̂,p =
∮
S1

1
2πi

∮
|z|=1

Qα̂,p+1(λ(z), λ̄(z))dz
z

dx.

The dispersionless 2D Toda flows are finite combinations of the flows defined above.

The second part of our results, as mentioned above, involves the solution of the de-
formed flatness equations of the Frobenius manifold M0. More precisely let us consider 
the following functions on M0 × C

×, which are holomorphic in the parameter ζ in a 
neighborhood of ζ = 0

θα(ζ) = − 1
2πi

∮
|z|=1

(λ + λ̄)α+1

α + 1 e
λ̄−λ

2 ζ dz

z
for α �= −1, (1a)

θ−1(ζ) = − 1
2πi

∮
|z|=1

[
e−λζ

(
log

(
1 + λ̄

λ

)
+ Ein(−λζ) − 1

)
+ e

λ̄−λ
2 ζ

]
dz

z
, (1b)

θv(ζ) = 1
2πi

∮
|z|=1

[
− e−λζ

(
log

(
1 + λ̄

λ

)
+ Ein(−λζ) − 1

)
+ (1c)

+ eλ̄ζ
(
log λ̄(λ + λ̄) − Ein(λ̄ζ) − 1

) ]dz
z
, (1d)

θu(ζ) = 1
2πi

∮
|z|=1

eλ̄ζ − 1
ζ

dz

z
(1e)

and the functions

yα(ζ) = ζα+ 1
2 θα(ζ), (2a)

yv(ζ) = ζ
1
2
(
ζ−1θv(ζ) + 2 log(ζ)θu(ζ)

)
, (2b)

yu(ζ) = ζ
1
2 θu(ζ), (2c)
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which are multivalued in ζ on C× := C\{0}. Here Ein(z) denotes the entire exponential 
integral function, defined in (22).

Theorem. The sequence of functions {yα̂(ζ)}α̂∈Z
on M0 × C

× forms a Levelt basis of 
deformed flat coordinates for M0.

The Principal hierarchy is given by the set of vector fields on LM0 defined by the 
Poisson structure associated with the flat metric η on M0 and the Hamiltonians

Hα̂,p =
∮
S1

θα̂,p+1 dx,

where the Hamiltonian densities θα̂,p are obtained by expanding at ζ = 0 the analytic 
part of the Levelt basis of deformed flat coordinates

θα̂(ζ) =
∑
p�0

θα̂,pζ
p.

Since

θα̂,p = 1
2πi

∮
|z|=1

Qα̂,p
dz

z
,

the Hamiltonians of the Principal hierarchy are equal to those of the extended 2D Toda 
hierarchy defined before.

Theorem. The Principal hierarchy of the Frobenius manifold M0 coincides with the ex-
tended dispersionless 2D Toda hierarchy restricted on LM0.

Notice that recently other examples of infinite-dimensional Frobenius manifolds and 
associated dispersionless hierarchies have appeared in the literature. In [13] Raimondo 
has constructed a Frobenius manifold structure on a vector subspace of the space of 
Schwartz functions S(R) on the real line which is associated with the dispersionless 
Kadomtsev–Petviashvili hierarchy (dKP). Wu and Xu [17] have defined a family of 
Frobenius manifolds on the space of pairs of certain even functions meromorphic in 
the interior/exterior of the unit disk in C, which are related to the dispersionless two-
component BKP hierarchy. In both cases the authors define, essentially by bihamiltonian 
recursion, dispersionless hierarchies which extend the original 2 + 1 systems. Note that 
the definition of such hierarchies is somehow simpler since it does not require the con-
struction in terms of the Levelt normal form of the deformed flat connection, as presented 
here.

The article is organized as follows: in the first Section we define the extended disper-
sionless 2D Toda hierarchy on the loop space of holomorphic Lax symbols with certain 
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conditions on the winding numbers. We first recall some basic facts on the dispersion-
less 2D Toda hierarchy and introduce the analytic setting. Next we give the Lax and 
bi-Hamiltonian formulation of the extended flows and show that they indeed contain 
the usual dispersionless flows of the 2D Toda hierarchy. In the second Section we study 
the deformed flat connection associated with the infinite-dimensional Frobenius manifold 
M0 defined in [3]. We obtain simple expressions for the metric and its Levi–Civita con-
nection in a new set of “mixed” coordinates. Necessary background from the theory of 
the Frobenius manifold M0 is recalled when necessary. We solve explicitly the deformed 
flatness equations and prove that our solution provides a Levelt system of deformed flat 
coordinates. Expanding in the deformation parameter we obtain the Hamiltonian densi-
ties of the Principal hierarchy of M0 which coincide with those of the extended 2D Toda 
hierarchy. Finally an alternative, though slightly more complicated, system of deformed 
flat coordinates satisfying an orthogonality condition (cf. [9, Theorem 3.6.4]), and the 
corresponding Principal hierarchy are presented.

1. The extended dispersionless 2D Toda hierarchy

In this section we define an extension of the dispersionless 2D Toda hierarchy intro-
duced by Takasaki and Takebe [14] as the small dispersion limit of the 2D Toda hierarchy 
of Ueno and Takasaki [15]. To perform such extension we assume that Lax functions λ, 
λ̄ are non-vanishing holomorphic functions on neighborhoods of z = ∞, 0 respectively, 
which contain the unit circle, and that they satisfy certain analytic assumptions. We 
begin by recalling the standard formulation of the dispersionless 2D Toda hierarchy.

1.1. The dispersionless 2D Toda hierarchy

The dispersionless 2D Toda hierarchy is an infinite set of commuting quasi-linear 
PDEs for two sets of variables uk, ūl depending on a “space” variable x and two series 
of independent “time” variables t = (tk)k�0, t̄ = (t̄k)k�0. Let the Lax symbols

λ(z, x) = z +
∑
k�0

uk(x)zk, λ̄(z, x) =
∑
l�−1

ūl(x)zl

be two formal Laurent series in z. The dispersionless 2D Toda hierarchy is defined by 
the Lax equations

∂λ

∂tn
= {(λn)+, λ},

∂λ̄

∂tn
= {(λn)+, λ̄}, (3a)

∂λ

∂t̄n
= {(λ̄n)−, λ},

∂λ̄

∂t̄n
= {(λ̄n)−, λ̄}. (3b)

The bracket of two functions of the variables z, x is defined by
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{f(z, x), g(z, x)} = z
∂f

∂z

∂g

∂x
− z

∂g

∂z

∂f

∂x
,

while the notations ( )+, ( )− represent projections taken with respect to the variable z:
(∑

k

fkz
k

)
+

=
∑
k�0

fkz
k,

(∑
k

fkz
k

)
−

=
∑
k<0

fkz
k.

Eqs. (3) are formal Laurent series in z: each coefficient defines an evolutionary quasi-
linear equation involving a finite number of dependent variables uk, ūl. Such equations 
have the remarkable property of defining commutative flows

[
∂

∂sn
,

∂

∂sm

]
= 0

for sn equal to either tn or t̄n.
The flows (3) admit a bi-Hamiltonian formulation [1]

∂

∂tn
· = {·, Hn}1 = −{·, Hn−1}2, (4a)

∂

∂t̄n
· = {·, H̄n}1 = {·, H̄n−1}2 (4b)

with Hamiltonians given by

Hn = −
∫

Res λn+1

n + 1
dz

z
dx, H̄n = −

∫
Res λ̄n+1

n + 1
dz

z
dx,

where the residue of a formal series is Res
∑

k fkz
k dz

z = f0. The hydrodynamic type 
Poisson brackets {, }1 and {, }2 are compatible, i.e. any their linear combination is still 
a Poisson bracket. These Poisson brackets have been defined in [1]. Their definition is 
recalled below in Proposition 1.

1.2. Analytic setting

Denote D0 the closed unit disc in the Riemann sphere C ∪ {∞}, D∞ the closure of 
the complement of D0 and S1 = D0 ∩D∞ the unit circle. For a compact subset K of the 
Riemann sphere, denote by H(K) the space of holomorphic functions on K, i.e. functions 
which extend holomorphically to a neighborhood of K.

For each p ∈ Z the space of holomorphic functions on a neighborhood of S1 splits in 
a direct sum

H(S1) = zpH(D0) ⊕ zp−1H(D∞).

The projections
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( )�p : H(S1) → zpH(D0), ( )�p−1 : H(S1) → zp−1H(D∞)

are given by

(f)�p(z) =
∑
k�p

fkz
k = zp

2πi

∮
|z|<|ζ|

ζ−pf(ζ)
ζ − z

dζ,

(f)�p−1(z) =
∑

k�p−1

fkz
k = − zp

2πi

∮
|z|>|ζ|

ζ−pf(ζ)
ζ − z

dζ

for f(z) =
∑

k∈Z
fkz

k ∈ H(S1). As usual ( )+ = ( )�0 and ( )− = ( )�−1. The symbol 
( )k : H(S1) → C denotes the coefficient of zk in the Laurent series expansion, i.e. 
(f)k = 1

2πi
∮
|z|=1 f(z)z−k dz

z .
Define the infinite-dimensional manifold M as the affine subspace

M =
{
(λ(z), λ̄(z)) ∈ zH(D∞) ⊕ 1

z
H(D0)

∣∣ λ(z) = z + O(1) for z → ∞
}

in the direct sum of the vector spaces zH(D∞) and 1
zH(D0). We will sometimes refer to 

M as the space of pairs of holomorphic Lax symbols.
For (λ, ̄λ) ∈ M , the functions λ(z), λ̄(z) have the following Laurent series expansions

λ(z) = z +
∑
k�0

ukz
k, λ̄(z) =

∑
k�−1

ūkz
k

at ∞ and 0 respectively.
The tangent space at a point λ̂ = (λ(z), ̄λ(z)) ∈ M will be identified with a space of 

pairs of functions

Tλ̂M
∼= H(D∞) ⊕ 1

z
H(D0)

where a vector ∂X is associated with the pair X = (X(z), X̄(z)) given by X(z) = ∂Xλ(z)
and X̄(z) = ∂X λ̄(z).

The cotangent bundle at λ̂ ∈ M will be given also by a space of pairs of functions

T ∗
λ̂
M ∼= H(D0) ⊕ zH(D∞)

by representing a covector α as the pair (α(z), ᾱ(z)) by the residue pairing

< α,X >= 1
2πi

∮
|z|=1

[
α(z)X(z) + ᾱ(z)X̄(z)

] dz
z
. (5)

Note that we are using a definition of residue pairing which is slightly different from the 
one in [3], in particular here the measure is dz/z instead of dz, and as a consequence, in 
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the representation of a covector as a pair of functions (α(z), ᾱ(z)), we allow ᾱ(z) to have 
a simple pole rather than α(z). This difference is of course immaterial, but consistent 
with the usual dispersionless 2D Toda formulation.

A point in the loop space LM of smooth maps from S1 to the M is given by a pair of 
functions (λ(z, x), ̄λ(z, x)). Here S1 = R mod 2π, while the symbol S1 will denote the 
unit circle in C.

A tangent vector at a point (λ(z, x), ̄λ(z, x)) ∈ LM is clearly identified with a map 
from S1 to H(D∞) ⊕ 1

zH(D0) and a 1-form with a map from S1 to H(D0) ⊕ zH(D∞). 
The pairing of a vector X = (X(z, x), X̄(z, x)) and a 1-form α = (α(z, x), ᾱ(z, x)) is

< α,X >= 1
2πi

∮
S1

∮
|z|=1

[
α(z, x)X(z, x) + ᾱ(z, x)X̄(z, x)

] dz
z
dx,

which is the natural extension of the pairing (5).
Eqs. (3) defining the 2D Toda flows specify, for each n > 0, a vector field over LM . 

Indeed, note that Eqs. (3) are of the form

(∂tλ, ∂tλ̄) = ({−Q−, λ}, {Q+, λ̄})

where Q = λn or λ̄n. For (λ, ̄λ) ∈ LM , at fixed x ∈ S1, we have Q(z) ∈ H(S1) and we 
can easily check that this implies that {Q−, λ} ∈ H(D∞) and {Q+, ̄λ} ∈ 1

zH(D0). Hence 
({−Q−, λ}, {Q+, ̄λ}) ∈ Tλ̂LM .

Recall that a Poisson bracket {, }i of two local functionals F , G on LM is written in 
terms of a Poisson operator Pi from the cotangent to the tangent space of LM as follows

{F,G}i =< dF, Pi(dG) > .

The bi-Hamiltonian structure of the 2D Toda hierarchy, in the dispersive case, was 
defined in [1] by using R-matrix theory applied to an algebra of pairs of difference 
operators. We recall here the formulas for the dispersionless limit of the Poisson brackets, 
which were obtained in [3], in the analytic setting.

Proposition 1. The maps Pi : T ∗LM → TLM define compatible Poisson brackets on LM . 
Such maps, given a 1-form ω̂ = (ω, ω̄) ∈ T ∗

λ̂
LM at λ̂ = (λ, ̄λ) ∈ LM , are defined 

by

P1(ω̂) =
(
− {λ, (ω − ω̄)−} + ({λ, ω} + {λ̄, ω̄})�0,

{λ̄, (ω − ω̄)+} + ({λ, ω} + {λ̄, ω̄})>0
)

P2(ω̂) =
(
{λ, (λω + λ̄ω̄)−} − λ({λ, ω} + {λ̄, ω̄})�0 + zλ′φx,

− {λ̄, (λω,+λ̄ω̄)+} + λ̄({λ, ω} + {λ̄, ω̄})>0 + zλ̄′φx

)
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where

φx = 1
2πi

∮
|z|=1

(
{λ, ω} + {λ̄, ω̄}

)dz
z
.

The Hamiltonians

Hn = − 1
2πi

∫
S1

∮
|z|=1

λn+1

n + 1
dz

z
dx, H̄n = − 1

2πi

∫
S1

∮
|z|=1

λ̄n+1

n + 1
dz

z
dx

define local functionals on LM and generate the Hamiltonian vector fields (3) according 
to (4). Summarizing well known facts in this analytic setting:

Proposition 2. The dispersionless 2D Toda hierarchy equations (3) define a set of bi-
Hamiltonian commuting vector fields on LM , with respect to the Poisson brackets {, }i
and with recursion relations (4).

Note that we have chosen to represent 1-forms on M by elements of H(D0) ⊕zH(D∞)
using the pairing (5). One can more generally represent a 1-form by a pair of functions in 
H(S1) ⊕H(S1): the 1-form does not change by adding to the representative an element 
in 1zH(D∞) ⊕z2H(D0) (recall that zpH(D∞) and zpH(D0) are seen here as subspaces of 
H(S1), for any p ∈ Z). The freedom of choosing the representative extends of course to 
the 1-forms on the loop space. Later we will need the following easy to check observation:

Lemma 3. For i = 1, 2, the Poisson map Pi maps a 1-form ω̂ to a vector X = Pi(ω̂)
which is independent of the choice of the representative for ω̂ ∈ Tλ̂LM in H(S1) ⊕H(S1).

1.3. The extended hierarchy: Lax formulation

We now impose extra analyticity conditions on Lax functions which allow us to extend 
the 2D Toda hierarchy with new flows involving products of λ, λ̄ and their logarithms.

Let us define the manifold M1 as the open subset of M given by pairs of functions 
(λ(z), ̄λ(z)) ∈ M which satisfy the following winding numbers condition:

the functions w(z) := λ(z) + λ̄(z), λ(z) and λ̄(z) when restricted to the unit circle 
S

1 := {z ∈ C s.t. |z| = 1} define analytic curves in C× with winding number around 
0 respectively equal to 1, 1 and −1.

Since M1 is an open subset of M we can represent TM1 and T ∗M1 as before.
The flows of the extended 2D Toda hierarchy are defined by the following Lax repre-

sentation

∂λ = {−(Qα̂,p)−, λ},
∂λ̄ = {(Qα̂,p)+, λ̄}, (6)
∂tα̂,p ∂tα̂,p
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for α̂ ∈ Ẑ = Z ∪{u, v} and p � 0. The Qα̂,p are functions of λ, λ̄ defined by the formulas

Qα,p = − (λ + λ̄)α+1(λ̄− λ)p

(α + 1)(2p)!! for α �= −1, (7a)

Q−1,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp − 1

)
− (λ̄− λ)p

(2p)!! , (7b)

Qv,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp − 1

)
+

+ λ̄p

p!

(
log

(
λ̄(λ + λ̄)

)
− cp − 1

)
, (7c)

Qu,p = λ̄p+1

(p + 1)! (7d)

where cp = 1 + · · · + 1
p are the harmonic numbers (with c0 = c−1 = 0).

Let us consider the well-posedness of the Lax equations. We have seen above that 
each 2D Toda evolutionary flow defines a vector field of the form

({−Q−, λ}, {Q+, λ̄}) ∈ Tλ̂LM

over LM , for Q = λn or λ̄n. This is based on the fact that Q is an entire function of λ
or λ̄, hence, by composition with λ(z) or λ̄(z) it gives a function Q(z) holomorphic in 
a neighborhood of the unit circle. This in turn implies that the projections make sense 
and that the dispersionless Lax equations define a vector field.

For more general functions Q(λ, ̄λ), which e.g. might not be holomorphic on the 
whole C

2, the projections appearing in the Lax equations do not make sense for ev-
ery λ̂ ∈ LM . Hence we need to impose extra conditions on the functions λ, λ̄, as we can 
see from the following simple general observation.

Lemma 4. Let Q(λ, ̄λ) be a multivalued holomorphic function on an open subset of C2

and M ′ an open subset of M defined by imposing extra conditions on (λ, ̄λ) ∈ M , such 
that

Q(z) = Q(λ(z), λ̄(z)) ∈ H(S1) for any (λ, λ̄) ∈ M ′. (8)

Then the Lax equations

∂λ

∂t
= {−Q−, λ},

∂λ̄

∂t
= {Q+, λ̄},

give a well-defined vector field on LM ′.

The conditions defining the manifold M1 clearly imply that the property (8) is satisfied 
for Q’s of the form (7). For example the logarithmic part of Q−1,p can be written as
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log
(

1 + λ̄

λ

)
= log λ + λ̄

z
− log λ

z
.

The winding number condition on λ +λ̄ is equivalent to the fact that λ+λ̄
z can be lifted to 

a map from S1 to the Riemann surface of the logarithm, i.e. the universal covering of C×. 
Therefore log λ(z)+λ̄(z)

z , as a function of z, is in H(S1). A similar reasoning shows that 
log λ(z)

z ∈ H(S1), hence Q−1,p(λ(z), ̄λ(z)) ∈ H(S1) for (λ(z), ̄λ(z)) ∈ M1. In conclusion 
the Lax equations (6) provide well-defined vector fields on LM1.

Let us observe that the winding number conditions on λ(z) and λ̄(z) are equivalent to 
the fact that λ(z), λ̄(z) are not vanishing on D∞, D0 respectively and that the leading 
term of λ̄(z) is non-zero.

Lemma 5. Let (λ(z), ̄λ(z)) ∈ M . The function λ(z) restricted to S1 parametrizes an 
analytic curve in C× of winding number 1 if and only if λ(z) is non-vanishing in D∞. 
The function λ̄(z) restricted to S1 parametrizes an analytic curve in C× of winding 
number −1 if and only if λ̄(z) is non-vanishing in D0 and the leading coefficient ū−1 in 
λ̄(z) = ū−1z

−1 + O(1) for |z| → 0 is non-zero.

Proof. The winding number of the curve parametrized by λ̄ : S1 → C
× is given by the 

logarithmic residue

1
2πi

∮
|z|=1

λ̄′(z)
λ̄(z)

dz = N + N0

where N � 0 is the number of zeros (counted with their multiplicity) of λ̄(z) in D0\{0}
and N0 � −1 is the order of λ̄(z) at z = 0. Clearly if the winding number is −1 we must 
have N = 0 and N0 = −1. The converse is obvious as is the statement on λ(z). �

For (λ(z), ̄λ(z)) ∈ M1 this observation implies that λ(z)
z (resp. zλ̄(z)) maps D∞

(resp. D0) to a bounded subset of C× hence

log λ(z)
z

∈ 1
z
H(D∞), log zλ̄(z) ∈ zH(D0). (9)

Commutativity as usual follows from the Zakharov–Shabat equations, which turn out 
to be quite simple.

Proposition 6. The Lax equations (6) imply that the following ZS zero curvature equations 
hold

∂Qα̂,p

∂tβ̂,q
−

∂Qβ̂,q

∂tα̂,p
+ {(Qα̂,p)+, (Qβ̂,q)+} − {(Qα̂,p)−, (Qβ̂,q)−} = 0. (10)
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Proof. To avoid cumbersome notations let Q := Qα̂,p and Q̃ := Qβ̂,q. Computing

∂Q

∂tβ̂,q
= Qλ{−Q̃−, λ} + Qλ̄{Q̃+, λ̄},

substituting in the last term Q̃+ = Q̃− Q̃− and using the Leibniz rule we get

∂Q

∂tβ̂,q
= {−Q̃−, Q} + Qλ̄{Q̃, λ̄}

hence

∂Q

∂tβ̂,q
− ∂Q̃

∂tα̂,p
= {−Q̃−, Q} + Qλ̄{Q̃, λ̄} − {−Q−, Q̃} − Q̃λ̄{Q, λ̄}.

Rewriting the last term in the right-hand side as

−Q̃λ̄Qλ{λ, λ̄} = −Qλ{λ, Q̃}

and using the Leibniz rule again we get

∂Q

∂tβ̂,q
− ∂Q̃

∂tα̂,p
= {−Q̃−, Q} − {−Q−, Q̃} + {Q̃,Q}.

A simple rearrangement of the right-hand side gives the desired result. �
The commutativity of the flows (6) follows from (10). For example

[
∂tα̂,p , ∂tβ̂,q

]
λ(z) =

{
−∂(Qα̂,p)−

∂tβ̂,q
+

∂(Qβ̂,q)−
∂tα̂,p

+ {(Qα̂,p)−, (Qβ̂,q)−}, λ
}

= 0

because the first term in the big curly bracket is given by the projection to 1
zH(D∞) of 

the left-hand side of (10).
Let us consider a couple of explicit examples of the extended flows.

Example 7. From (7) we have that

Qv,0 = log λ + log λ̄ = log λ

z
+ log zλ̄.

Using (9), we can easily compute the Lax equations

∂λ

∂tv,0
= {−(Qv,0)−, λ} = {− log λ

z
, λ} = {log z, λ} = ∂λ

∂x

and similarly
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∂λ̄

∂tv,0
= ∂λ̄

∂x
.

Therefore the time tv,0 corresponds to the space variable x, as expected from the Frobe-
nius manifold construction in the next section. Note that the x-translation was not 
present among the original dispersionless Toda Lax flows.

Example 8. Consider now the Lax equations for the nontrivial time tv,1. From (7) we get

Qv,1 = λ log
(

1 + λ̄

λ

)
+ λ̄ log(λλ̄ + λ̄2) − 2λ̄.

For (λ, ̄λ) ∈ M1 we can evaluate the projections of Qv,1(z) = Qv,1(λ(z), ̄λ(z)). To this 
aim is convenient to rewrite the previous expression as

Qv,1 = (λ + λ̄) log λ + λ̄

z
− λ log λ

z
+ λ̄(log zλ̄− 2).

Using the identities

(
λ log λ

z

)
+

= u0,
(
λ̄ log zλ̄

)
− = (ū−1 log ū−1)z−1

we easily obtain

(Qv,1)− =
(

(λ + λ̄) log λ + λ̄

z

)
−
− λ log λ

z
+ u0 + ū−1(log ū−1 − 2)z−1

and then

∂λ

∂tv,1
= {−(Qv,1)−, λ}

=
(
−
(
z(λz + λ̄z) log λ + λ̄

z

)
−
− u0 + ū−1z

−1 log ū−1

)
λx

+
((

z(λx + λ̄x) log λ + λ̄

z

)
−

+ ∂ū−1

∂x
log ū−1

)
λz.

With a similar computation one can obtain ∂λ̄
∂tv,1 .

1.4. The extended hierarchy: bi-Hamiltonian formulation

We now show that the evolutionary flows of the extended 2D Toda hierarchy are 
bi-Hamiltonian with respect to the Poisson structures Pi.
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The Hamiltonians are functionals on LM1 given by

Hα̂,p =
∮
S1

hα̂,p dx, α̂ ∈ Ẑ, p � −1

where the Hamiltonian densities hα̂,p are expressed in terms of the functions Qα̂,p defined 
in (7) as

hα̂,p = 1
2πi

∮
|z|=1

Qα̂,p+1(λ(z), λ̄(z)) dz
z
.

Proposition 9. The flows of the extended 2D Toda hierarchy are bi-Hamiltonian w.r.t. 
the Poisson brackets {, }i

∂

∂tα̂,p
· = {·, Hα̂,p}1

with Hamiltonians Hα̂,p and the recursion relations

{·, Hα,p}2 = (α + p + 2){·, Hα,p+1}1,

{·, Hv,p}2 = (p + 1){·, Hv,p+1}1 + 2{·, Hu,p}1,

{·, Hu,p}2 = (p + 2){·, Hu,p+1}1

for p � −1. Moreover Hα̂,−1 are Casimirs of {, }1.

Proof. The Hamiltonians Hα̂,p are of the form

H = 1
2πi

∮
S1

∮
|z|=1

Q(λ, λ̄) dz
z

dx,

where the function Q(z) = Q(λ(z), ̄λ(z)) is in H(S1), when (λ, ̄λ) ∈ M .
From Lemma 3 it follows that the differential of H

dH =
((∂Q

∂λ

)
�0

,
(∂Q
∂λ̄

)
�1

)
∈ H(D0) ⊕ zH(D∞)

can be equivalenty represented by

dH =
(
∂Q

∂λ
,
∂Q

∂λ̄

)
∈ H(S1) ⊕H(S1).

For any function Q(λ, ̄λ) we have that

{λ,Qλ} + {λ̄, Qλ̄} = 0
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hence, substituting in the Poisson maps given in Proposition 1, we obtain

P1(dH) =
(
{λ, (Qλ̄ −Qλ)−}, {λ̄,−(Qλ̄ −Qλ)+}

)
,

P2(dH) =
(
{λ, (λQλ + λ̄Qλ̄)−},

(
− {λ̄, (λQλ + λ̄Qλ̄)+}

)
,

where we have denoted Qλ = ∂Q
∂λ and Qλ̄ = ∂Q

∂λ̄
.

One can check directly, using the homogeneity properties of Qα̂,p, that

(
∂

∂λ̄
− ∂

∂λ

)
Qα̂,p = Qα̂,p−1

and (
λ
∂

∂λ
+ λ̄

∂

∂λ̄

)
Qα,p = (α + p + 1)Qα,p,(

λ
∂

∂λ
+ λ̄

∂

∂λ̄

)
Qv,p = pQv,p + 2Qu,p−1,(

λ
∂

∂λ
+ λ̄

∂

∂λ̄

)
Qu,p = (p + 1)Qu,p,

for α̂ ∈ Ẑ, α ∈ Z and p � 0. In these formulas we have assumed

Q−1,−1 = − 1
λ(z) , Qv,−1 = 1

λ̄(z)
− 1

λ(z) , Qu,−1 = 1,

and Qα,−1 = 0 for α �= −1.
The Lax equations (6) and the recursion relations are an easy consequence of these 

formulas.
The fact that Hv,−1 is a Casimir follows from

P1(dHv,−1) =
(
{λ, (Qv,−1)−}, {λ̄,−(Qv,−1)+}

)
=

(
{λ,− 1

λ(z)}, {λ̄,−
1

λ̄(z)
}
)

= 0

and a similar computation holds for H1,−1. Note that in the last formula it is essential 
that 1

λ(z) ∈ 1
zH(D∞) and 1

λ̄(z) ∈ zH(D0) i.e. that λ(z) and λ̄(z) do not have zeros. �
Remark 10. Note that for α � 0 the Lenard–Magri bi-Hamiltonian recursion starts from 
the Casimir Hα,−1 of {, }1 and induces the infinite chains of Hamiltonians Hα,p, p � 0. 
On the other hand for α � −1 the Lenard–Magri chain starting from the Casimir Hα,−1
stops after −α − 1 steps at the Casimir Hα,−α−2 of the second Poisson bracket. The 
remaining Hamiltonians Hα,p for p � −α − 1, α � −1 are included in chains starting 
from Hα,−α−1 which are not Casimirs. Similarly the chain Hu,p starts from the Casimir 
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Hu,−1 of the first Poisson bracket and the chain Hv,p starts from Hv,0 which is not a 
Casimir. Finally note that the Hamiltonians H−1,−1 and Hv,−1 are common Casimirs of 
{, }1 and {, }2.

Remark 11. Let us finally observe that the extended 2D Toda hierarchy defined above 
really extends the usual dispersionless 2D Toda. Indeed, the Hamiltonians Hn, H̄n of 
the dispersionless 2D Toda hierarchy are finite combinations of the Hamiltonians of the 
dispersionless extended 2D Toda hierarchy:

Hn = (−1)n n!Hu,n−1 +
n∑

l=0

n! ((−1)l − (−1)n+1)
(n− l)! 2n−l+1 Hn−l,l−1,

H̄n = −n! Hu,n−1.

1.5. Tau symmetry

The hamiltonian densities hα̂,p of the extended dispersionless 2D Toda are tau sym-
metric, as can be easily proved using the Zakharov–Shabat equations.

Proposition 12. The Hamiltonian densities hα̂,p satisfy the tau-symmetry

∂hα̂,p−1

∂tβ̂,q
=

∂hβ̂,q−1

∂tα̂,p

for any α̂, β̂ ∈ Ẑ and p, q � 0.

Proof. By Eq. (10) we have that

∂hα̂,p−1

∂tβ̂,q
−

∂hβ̂,q−1

∂tα̂,p
= 1

2πi

∮
|z|=1

[
∂Qα̂,p

∂tβ̂,q
−

∂Qβ̂,q

∂tα̂,p

]
dz

z

is equal to

1
2πi

∮
|z|=1

[
−{(Qα̂,p)+, (Qβ̂,q)+} + {(Qα̂,p)−, (Qβ̂,q)−}

] dz

z

which clearly vanishes. �
Remark 13. Note that in the proof of the tau-symmetry we have not used the explicit form 
of the Hamiltonians: the only relevant property is that the Lax equations for the time 
tα̂,p and the Hamiltonian density hα̂,p−1 are written in terms of the same function Qα̂,p. 
This requires the choice of a proper normalization of the flows.
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2. The principal hierarchy of M0

In [3] an infinite-dimensional Frobenius manifold structure was defined on an open 
subset M0 of M with the property that the associated flat pencil of metrics induces on 
LM0 the Poisson pencil of the (dispersionless) 2D Toda hierarchy. For this reason we 
refer to M0 as the 2D Toda Frobenius manifold.

In this section we find the explicit solution to the flatness equations of the deformed 
connection of the 2D Toda Frobenius manifold. The expansion of such solution for the 
deformation parameter ζ ∼ ∞ defines a sequence of Hamiltonian densities on M0. These 
in turn define, through the hydrodynamic type Poisson structure associated with the 
flat metric of the Frobenius manifold M0, a hierarchy of commuting equations on the 
loop space LM0, the so-called Principal hierarchy. We show that such hierarchy coincides 
with the extended 2D Toda hierarchy introduced in the previous section.

2.1. The manifold M0 as a bundle on the space of parametrized simple curves

The manifold M0 was defined in [3] as the open subset of M given by pairs of functions 
(λ(z), ̄λ(z)) ∈ M that satisfy the conditions

i. the coefficient ū−1 in the expansion λ̄(z) = ū−1z
−1 +O(1) for z → 0 is non-zero and 

the derivative of w(z) := λ(z) + λ̄(z) does not vanish on the unit circle S1 := {z ∈
C s.t. |z| = 1};

ii. the closed curve Γ parametrized by the restriction of w(z) to S1 is positively oriented, 
non-selfintersecting and encircles the origin w = 0.

Here we also require that

iii. the functions λ(z), λ̄(z) are non-vanishing for z in D∞, D0 respectively.

Condition (i.) guarantees the invertibility of the metric η and condition (ii.) the solv-
ability of the Riemann–Hilbert problem defining the flat coordinates, see Section 2.4. 
Note that, by Lemma 5, condition (iii.) implies that the winding conditions defining M1

are satisfied, i.e. M0 ⊂ M1.
The manifold M0 can be seen as (an open subset of) a trivial two-dimensional fiber 

bundle over the space Mred of parametrized simple analytic curves, as shown by the map

M0 −→ Mred ⊕ C⊕ C

(λ(z), λ̄(z)) �−→ (w(z), v, u)

where w(z) := λ(z) + λ̄(z) ∈ H(S1), v := ū0 = (λ̄)0 and eu := ū−1 = (λ̄)1. Note that 
this map can be easily inverted by
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λ(z) = w�0(z) + z − v − euz−1, λ̄(z) = w�1(z) − z + v + euz−1.

We refer to the variables (w(z), v, u) as w-coordinates.
In analogy with the construction of the tangent and cotangent spaces to M given 

in the previous section, the w-coordinates suggest to identify both the tangent and the 
cotangent spaces at a point λ̂ ∈ M0 with

Tλ̂M
∼= T ∗

λ̂
M ∼= H(S1) ⊕ C

2.

A vector ∂X is now represented by a triple X = (X(z), Xv, Xu) where X(z) = ∂Xw(z), 
Xv = ∂Xv and Xu = ∂Xu. A 1-form α is represented by a triple (α(z), αv, αu) through 
the pairing

< α,X >= 1
2πi

∮
|z|=1

α(z)X(z)dz
z

+ αvXv + αuXu.

Switching to this representation is achieved by the following formulas: a vector X =
(X(z), X̄(z)) ∈ H(D∞) ⊕ 1

zH(D0) and a 1-form α = (α(z), ᾱ(z)) ∈ H(D0) ⊕ zH(D∞)
are represented by triples

X =
(
X(z) + X̄(z), (X̄(z))0,

1
ū−1

(X̄)−1
)
,

α =
(
α(z) + (ᾱ(z))<0, (ᾱ(z) − α(z))0, ū−1(ᾱ(z) − α(z))1

)
,

in H(S1) ⊕ C
2.

This representation of the tangent and cotangent spaces turns out to be quite con-
venient and natural (see e.g. the simple formulas for the metric (12) and the con-
nection (13)). In the following we will freely use both representations of vectors and 
covectors, often without specifying which one we are using, since in most cases it will be 
clear from the context.

2.2. The metric

In [3] the metric, i.e. a bilinear form η on the cotangent space T ∗M , was defined in 
terms of a linear map η∗ : T ∗M → TM by

η(α, β) =< α, η∗(β) > .

The map η∗ is defined as follows: a 1-form α = (α(z), ᾱ(z)) ∈ T ∗M is mapped to a 
vector X = η∗(α) = (X(z), X̄(z)) given by

X(z) = (zλ′(z)α(z) + zλ̄′(z)ᾱ(z))�0 − zλ′(z)(α(z) − ᾱ(z))<0,

X̄(z) = (zλ′(z)α(z) + zλ̄′(z)ᾱ(z))>0 + zλ̄′(z)(α(z) − ᾱ(z))�0.



G. Carlet, L.P. Mertens / Advances in Mathematics 278 (2015) 137–181 157
The map η∗ is invertible, i.e. the bilinear form η is non-degenerate, at the points (λ, ̄λ)
of M such that w′(z) = λ′(z) + λ̄′(z) �= 0 for z ∈ S

1 and ū−1 �= 0, i.e. in particular at 
the points of M0.

Representing vectors and 1-forms by elements in H(S1) ⊕ C
2, the map η∗ is given 

by

η∗ : T ∗M −→ TM

(α(z), αv, αu) �−→ (zw′(z)α(z), αu, αv)

and its inverse is obviously

η∗ : TM −→ T ∗M

(X(z), Xv, Xu) �−→ ( 1
zw′(z)X(z), Xu, Xv)

.

The bilinear form on the tangent space is written in w-coordinates as

η(X,Y ) = 1
2πi

∮
|z|=1

X(z)Y (z)
z2w′(z) dz + XvYu + XuYv, (11)

and on the cotangent space as

η(α, β) = 1
2πi

∮
|z|=1

α(z)β(z)w′(z)dz + αvβu + αuβv. (12)

Note that changing variable of integration this can in turn be expressed as an integral 
over the curve Γ = w(S1)

η(α, β) = 1
2πi

∮
Γ

α(z(w))β(z(w))dw + αvβu + αuβv.

2.3. The Levi–Civita connection

Now we derive a formula for the Levi–Civita connection of the metric η. Let us define 
the Christoffel symbol Γ of η as a map

Γ : TM ⊗ T ∗M → T ∗M

that associates to X ∈ TM , α ∈ T ∗M a 1-form ΓX(α) ∈ T ∗M ; representing vectors and 
1-forms by elements in H(S1) ⊕ C

2, we define

ΓX(α) =
(
α′(z)X(z)

′ , 0, 0
)
. (13)
w (z)



158 G. Carlet, L.P. Mertens / Advances in Mathematics 278 (2015) 137–181
The covariant derivative of the 1-form α along the vector field X is defined by

∇Xα = ∂Xα− ΓX(α) = (∂Xα(z) − α′(z)X(z)
w′(z) , ∂Xαv, ∂Xαu). (14)

Proposition 14. The connection ∇ is torsion free and compatible with the metric η.

Proof. The compatibility of ∇ with the metric η is equivalent to the identity

∂X (η(α, β)) = η(∇Xα, β) + η(α,∇Xβ)

for every α, β in T ∗M and X in TM . Let us first compute the following derivative along 
the vector X, using the Leibniz rule

∂X

∮
α(z)β(z)zw′(z)dz

z
=

=
∮

[((∂Xα(z))β(z) + α(z)(∂Xβ(z))) zw′(z) − z∂z(α(z)β(z))X(z)] dz
z

where in the last summand we used commutativity of ∂X and ∂z and integration by 
parts. The last expression is equal to

∮
[((∂Xα(z))β(z) + α(z)(∂Xβ(z))) zw′(z)

−(zα′(z)X(z))β(z) − α(z)(zβ′(z)X(z))] dz
z

=

=
∮

((∇Xα)(z)β(z) + α(z)(∇Xβ)(z)) zw′(z)dz
z
.

This formula allows us to easily take the derivative of formula (12)

∂X (η(α, β)) = 1
2πi

∮
((∇Xα)(z)β(z) + α(z)(∇Xβ)(z)) zw′(z)dz

z
+

+ (∂Xαv)βu + (∂Xαu)βv + αv(∂Xβu) + αu(∂Xβv) =

= η(∇Xα, β) + η(α,∇Xβ).

The compatibility of ∇ with the metric η is proved.
The fact that the torsion of ∇ is zero is equivalent to the identity

< ΓX(α), Y >=< ΓY (α), X > (15)

for every α, β in T ∗M and X, Y in TM . The proof is immediate. �
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2.4. Flat coordinates

Let us briefly recall the construction of the flat coordinates given in [3] and obtain 
explicit formulas for the flat coordinates functionals.

The simple curve Γ = w(S1) divides the Riemann sphere in an interior and an exterior 
domain. We denote their closures by Γ0 and Γ∞ respectively. The inverse z(w) of the 
function w(z) defines an holomorphic function on Γ, i.e. z(w) ∈ H(Γ).

Consider the following Riemann–Hilbert factorization problem: find two non-vanishing 
functions f0 ∈ H(Γ0), f∞ ∈ wH(Γ∞) such that

z(w) = f∞(w)
f0(w) for w ∈ Γ

and with normalization fixed by f∞(w) = w + O(1) for |w| → ∞. The solution to this 
factorization problem always exists and is unique.

The coefficients tα in the expansions

log f0(w) = −
∑
α�0

tαwα, log f∞(w)
w

=
∑
α<0

tαwα,

respectively in a neighborhood of w = 0 and ∞, along with tu = u and tv = v, form a 
system of flat coordinates.

Indeed one can easily see that

∂w(z)
∂tα

= −zw′(z)wα

and, by substituting in (11), one gets the nontrivial components of the Gram matrix 

η
(

∂
∂tα̂

, ∂

∂tβ̂

)
of the metric in flat coordinates

ηαβ = δα+β,−1, ηuv = ηvu = 1. (16)

Note that log z(w)
w ∈ H(Γ) is given by the sum

log z(w)
w

= log f∞(w)
w

− log f0(w).

For α � −1

1
2πi

∮
Γ

log f0(w) w−α−1 dw = 0

hence
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1
2πi

∮
Γ

log z(w)
w

w−α−1 dw = 1
2πi

∮
Γ

log f∞(w)
w

w−α−1 dw = tα,

where the last equality is evaluated by deforming the contour of integration to the neigh-
borhood of w = 0. By changing the variable of integration the left-hand side is written

1
2πi

∮
|z|=1

(
log z

w(z)

)′
w−α(z)

α
dz = 1

2πi

∮
|z|=1

w−α

α

dz

z
.

A similar computation can be performed in the case α � 0. We obtain the following 
representation of the flat coordinates as integrals on the unit circle

tα = 1
2πi

∮
|z|=1

w−α

α

dz

z
for α �= 0,

t0 = − 1
2πi

∮
|z|=1

log w(z)
z

dz

z
.

Observe that by substituting the differentials

dtα = (−w−α−1(z), 0, 0), dv = (0, 1, 0), du = (0, 0, 1) (17)

in formula (14) one can easily check that the tα̂ are flat functions with respect to the 
Levi–Civita connection ∇, i.e.

∇dtα̂ = 0.

2.5. The associative product and the deformed flat connection

The Frobenius manifolds are endowed with an associative commutative product on 
each tangent space. In the case of the 2D Toda Frobenius manifold this product was 
defined in [3] by introducing a multiplication on the cotangent spaces and then dualizing 
it via η to the tangent bundle. The product of two 1-forms α = (α(z), ᾱ(z)) and β =
(β(z), β̄(z)), represented by pairs of functions in H(D0) ⊕ zH(D∞), is given by

α · β =
(
α
[
zλ′β + zλ̄′β̄

]
>0 +

[
zλ′α + zλ̄′ᾱ

]
>0 β −

[
zλ′αβ + zλ̄′(αβ̄ + ᾱβ)

]
�0 ,

−ᾱ
[
zλ′β + zλ̄′β̄

]
�0 −

[
zλ′α + zλ̄′ᾱ

]
�0 β̄ +

[
zλ̄′ᾱβ̄ + zλ′(αβ̄ + ᾱβ)

]
�1

)
.

Given a vector field X over M0, the multiplication by X induces a linear map X· :
TM → TM sending Y �→ X · Y . This map can be dualized to the cotangent bundle, 
giving a linear map CX : T ∗M → T ∗M that coincides with the multiplication by η∗(X)
on the cotangent space: CX(α) = η∗(X) · α, where α is a 1-form. Now we obtain the 
explicit form of this operator, representing vectors and 1-forms as elements of H(S1) ⊕C

2.
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Lemma 15. Let X = (X(z), Xv, Xu) be a vector field on M0. The operator CX is given 
by

CX(α)

=
( X(z)
zw′(z)

(
(zw′(z)α(z))>0 − (zw′(z))>0α(z) + zα(z) + eu

z
(α(z) + αv) + αu

)

+ (X>0(z)α(z))<0 + (X�0(z)α(z))�0 + eu

z
Xu(α(z) + αv) + Xvα(z),

(X(z)α(z))0 + Xuαu + Xvαv,

(eu(X(z) + zw′(z)Xu)(α(z) + αv))1 − euXuαv + Xvαu

)
(18)

where α = (α(z), αv, αu) is a 1-form on M0.

The unit vector field is given by

e = ∂

∂v

which can be represented as e = (−1, 1) or as e = (0, 1, 0).
Recall [3] that the Frobenius manifold M0 is endowed also with an Euler vector field

E = (λ(z) − zλ′(z), λ̄(z) − zλ̄′(z))

or, equivalently

E = (w(z) − zw′(z), v, 2).

The deformed flat connection on M0 × C
× is defined as the deformation ∇̃ of the 

Levi–Civita connection ∇ (on the tangent bundle) given by the following formulas

∇̃XY = ∇XY + ζX · Y,

∇̃ d
dζ
Y = ∂ζY + E · Y − 1

ζ
V(Y ),

where X, Y are vector fields on M0 and ζ ∈ C
× is the deformation parameter. The 

remaining components of ∇̃ are assumed to be trivial, i.e. ∇̃X
d
dζ = ∇̃ d

dζ

d
dζ = 0. The 

operator V on TM is defined in terms of the Euler vector field E by

V = 1
2 −∇E (19)

since the charge of the Frobenius manifold M0 is d = 1.
Dualizing the definition of ∇̃ to the cotangent bundle we obtain the following formulas 

for its nontrivial components
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∇̃Xα = ∇Xα− ζCX(α),

∇̃ d
dζ
α = ∂ζα− U(α) + 1

ζ
V(α),

where α is a 1-form field, we denote by the same symbol V the transpose of the operator 
defined in (19) and by U = CE the operator of multiplication by η∗(E) on the contangent 
bundle. The invariance of the metric clearly implies that the operator U is symmetric 
w.r.t. η.

Lemma 16. The operator V : T ∗M → T ∗M on M0 is antisymmetric w.r.t. the metric η
and is explicitly given by

V(α) =
(
−α(z)

2 − zα′(z)
(

w(z)
zw′(z)

)
,−αv

2 ,
αu

2

)

where 1-forms are represented by elements in H(S1) ⊕C
2. The flat coordinates differen-

tials {dtα̂}α̂∈Ẑ
are eigenvectors of V, i.e. for α ∈ Z

V(dtα) = (α + 1
2)dtα, V(dv) = −1

2dv, V(du) = 1
2du.

Proof. Let α be a 1-form and X, Y vector fields. The covariant derivative of Y is

∇XY = ∂X + Γ∗
X(Y )

where the transpose Γ∗
X : TM → TM of the Christoffel symbol (13) is given by

Γ∗
X(Y ) =

(
−z∂z

(
X(z)Y (z)
zw′(z)

)
, 0, 0

)
.

We then compute

∇X(E) =
(
X(z) − z∂z

(
X(z) w(z)

zw′(z)

)
, Xv, 0

)

and consequently the operator V on the tangent bundle is given by

V(X) = X

2 −∇X(E) =
(
−X(z)

2 + z∂z

(
X(z) w(z)

zw′(z)

)
,−Xv

2 ,
Xu

2

)
.

Transposing we obtain the desired expression for V on the cotangent bundle.
Using such expression, the antisymmetry of V, i.e.

η(α,V(β)) + η(V(α), β) = 0

for any 1-forms α, β, can be easily checked.
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The proof is completed by computing V(dtα̂) using the explicit form of the differen-
tials (17). �
2.6. Deformed flat coordinates

A functional y(λ̂, ζ) on M0 ×C
× is called deformed flat if its differential is horizontal 

w.r.t. the deformed flat connection ∇̃, i.e.

∇̃dy = 0.

The general theory of (finite dimensional) Frobenius manifolds ensures that the deformed 
connection ∇̃ is flat. This in turn implies the local existence of a system of deformed 
flat coordinates i.e. a set of independent deformed flat functions. In this section we will 
provide an explicit system of deformed flat coordinates on M0, proving in particular the 
flatness of ∇̃ for the infinite-dimensional Frobenius manifold M0.

The deformed flatness equations for a differential dy are

∂Xdy = (ΓX + ζCX) (dy), (20a)

∂ζdy =
(
U − 1

ζ
V
)

(dy), (20b)

for any vector field X on M0.
The following theorem provides an infinite family of deformed flat functions.

Theorem 17. The family of functionals 
{
yα̂(λ̂, ζ)

}
α̂∈Ẑ

over M0 × C
× defined by

yα(ζ) := −ζ−1/2

2πi

∮
|z|=1

[ (λζ + λ̄ζ)α+1

α + 1 exp( λ̄ζ − λζ

2 )
] dz

z
for α �= −1, (21a)

y−1(ζ) := −ζ−1/2

2πi

∮
|z|=1

[
e−λζ

(
log λζ + λ̄ζ

z
− log(λζ

z
) + Ein(−λζ) − 1

)
+

+ exp( λ̄ζ − λζ

2 )
]dz
z
, (21b)

yv(ζ) := ζ−1/2

2πi

∮
|z|=1

[
− e−λζ

(
log(λζ + λ̄ζ

z
) − log(λζ

z
) + Ein(−λζ) − 1

)
+

+ eλ̄ζ
(

log λζ + λ̄ζ

z
+ log(zλ̄ζ) − Ein(λ̄ζ) − 1

)
− 2 log(ζ)

]dz
z
, (21c)

yu(ζ) := ζ−1/2

2πi

∮
|z|=1

[
exp(λ̄ζ) − 1

]dz
z
. (21d)

forms a Levelt system of deformed flat coordinates on M0 at ζ = 0.
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The functions yα̂(λ̂, ζ) are multivalued in the variable ζ ∈ C
×, with a branch point at 

ζ = 0. The branch point is of logarithmic type in the case of yv and of algebraic type in 
all the other cases. Note that the behavior of yv when ζ → e2πiζ is

yv → e−πi(yv + 4πiyu).

The logarithmic branch point is a consequence of the presence of resonance in the spec-
trum of the Frobenius manifold, as we will see in the next subsection.

Note that the entire exponential integral Ein(z) is an entire function defined by the 
power series

Ein(z) := −
∞∑

n=1

(−z)n

n! n (22)

with derivative z Ein′(z) = 1 − e−z.
In order to prove Theorem 17 we consider a general class of functionals of the form

y(λ, λ̄; ζ) := ζ−
1
2

2πi

∮
|z|=1

F (ζλ(z), ζλ̄(z))dz
z

+ φ(ζ) (23)

and give necessary and sufficient conditions for them to be deformed flat. In (23) we 
assume that F (x, ̄x) is an analytic function on an open set Ω in C2 and φ(ζ) to be a 
multivalued holomorphic function in C with a branch point of algebraic or logarithmic 
type at ζ = 0.

Note that in the following the function F and its partial derivatives Fx, Fx̄, Fxx, Fxx̄

and Fx̄x̄ are always implicitly evaluated in x = ζλ(z) and x̄ = ζλ̄(z). Projections like 
( )�0, ( )0, etc. are always taken with respect to the variable z.

Let us consider first the horizontality equation in the direction of the deformation 
variable ζ. The first important consequence of the choice of functionals of type (23)
is that it will directly follow from the other horizontality equations, as shown by the 
following proposition.

Proposition 18. Let y(λ̂; ζ) be a functional of the form (23) such that its differential is 
horizontal in the direction of the Euler vector field E, i.e.

∇E(dy(ζ)) = ζU(dy(ζ)). (24)

Then the horizontality in the direction ζ follows

∂ζdy(ζ) =
(
U − 1

ζ
V
)

(dy(ζ)). (25)
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Proof. For a functional of type (23) it is easy to check that the following identity 
holds

[
ζ∂ζ + 1

2

]
y(ζ) = E (y(ζ)) , (26)

up to an irrelevant function that depends only on ζ. Indeed the second term in the 
right-hand side of

E(y(ζ)) = ζ1/2 1
2πi

∮
(Fxλ + Fx̄λ̄)dz

z
− ζ1/2 1

2πi

∮
(Fxλ

′ + Fx̄λ̄
′)dz

vanishes, since it is the integral of a total derivative in z, and the first term equals 
ζ∂ζy(ζ) + 1

2y(ζ).
Differentiating Eq. (26), we obtain

ζ∂ζdy(ζ) + 1
2dy(ζ) = d(E(y(ζ))). (27)

Then we rewrite the right-hand side as (see below)

d(E(y(ζ))) = ∇Edy(ζ) + ∇dy(ζ)E (28)

and eliminate ∇Edy(ζ) using (24), obtaining from (27)

ζ∂ζdy(ζ) =
(
ζU − 1

2 + ∇E

)
(dy(ζ))

which, by definition of V, is the required Eq. (25).
Eq. (28) is proved by contracting its left-hand side with an arbitrary vector field X, 

obtaining

< d(E(y(ζ))), X > = ∂X < dy(ζ), E >

= < ∇Xdy(ζ), E > + < dy(ζ),∇XE > .

The last line, spelling out the covariant derivative in its first term and transposing the 
operator ∇E, is equal to

< ∂Xdy(ζ), E > − < ΓX(dy(ζ)), E > + < ∇dy(ζ)E,X > .

Here we used the symbol ∇dy(ζ)E to denote the transpose w.r.t. <, > of the operator X →
∇XE on the tangent bundle, evaluated on the 1-form dy(ζ). Finally by the torsionless 
property (15) of the Christoffel operator ΓX and the symmetry of second derivatives, i.e. 
< ∂Xdy, E >=< ∂Edy, X >, we obtain



166 G. Carlet, L.P. Mertens / Advances in Mathematics 278 (2015) 137–181
< d(E(y(ζ))), X >=< (∂E − ΓE + ∇E)(dy(ζ)), X >

which, by the arbitrarity of X, is equivalent to (28). �
Let us now consider the horizontality equations in the direction of M0. We need the 

following simple lemma.

Lemma 19. Let G(x, ̄x) be a function analytic in x and x̄. The following identity 
holds

z∂zG = ζ

(
Gx (zw′(z))�0 + Gx̄ (zw′(z))>0 − (Gx̄ −Gx)(z + eu

z
)
)
,

where G = G(ζλ(z), ζλ̄(z)), Gx = ∂G
∂x (ζλ(z), ζλ̄(z)) and Gx̄ = ∂G

∂x̄ (ζλ(z), ζλ̄(z)).

For functionals of type (23) we can reformulate (20a) in term of simpler constraints 
on the function F (x, ̄x).

Proposition 20. For a functional y(λ̂, ζ) of type (23) the horizontality equation (20a) is 
equivalent to

(Fxx̄ − Fxx − Fx)�−1 = 0

(Fx̄x̄ − Fxx̄ − Fx̄)�1 = 0

(Fx̄ − Fx − F )0 = c

∂u [eu(Fx̄ − Fx − F )]1 = 0 (29)

where c is a constant.

Proof. The horizontality equation of the differential dy(ζ) w.r.t. the deformed flat con-
nection,

∇̃dy(ζ) = 0,

can be split in three separate equations

∇̃Xdy(ζ) = 0, ∇̃ ∂
∂v
dy(ζ) = 0, ∇̃ ∂

∂u
dy(ζ) = 0

where X = (X(z), 0, 0), X(z) ∈ H(S1), which we will consider separately.
First part. Here prove that the differential dy(ζ) of a functional of the form (23) is 

covariantly constant along any vector of the form X = (X(z), 0, 0) iff

(Fxx̄ − Fxx − Fx)�−1 = 0 and (Fx̄x̄ − Fxx̄ − Fx̄)�0 = 0. (30)
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The differential of a functional of type (23) at fixed ζ ∈ C
× is given by

dy(ζ) = ( ∂y(ζ)
∂w(z) ,

∂y(ζ)
∂v

,
∂y(ζ)
∂u

) ∈ H(S1) ⊕ C
2

where the components are defined by

∂y(ζ)
∂w(z) =

√
ζ
(
(Fx)�0 + (Fx̄)<0

)
, (31a)

∂y(ζ)
∂v

=
√

ζ (Fx̄ − Fx)0 , (31b)

∂y(ζ)
∂u

=
√

ζ eu (Fx̄ − Fx)1 . (31c)

The v and u components of the horizontality equation

∂Xdy(ζ) = ΓX(dy(ζ)) + ζCX(dy(ζ)) (32)

are written explicitly as

∂X
∂y(ζ)
∂v

= ζ

(
X(z) ∂y(ζ)

∂w(z)

)
0
, (33a)

∂X
∂y(ζ)
∂u

= ζeu
(
X(z)

(
∂y(ζ)
∂w(z) + ∂y(ζ)

∂v

))
1

(33b)

respectively.
The derivations of the components of dy(ζ) along X = (X(z), 0, 0) are easily com-

puted

∂X
∂y(ζ)
∂w(z) = ζ

3
2 ((FxxX�0 + Fxx̄X�1)�0 + (Fxx̄X�0 + Fx̄x̄X�1)�−1) , (34a)

∂X
∂y(ζ)
∂v

= ζ
3
2 ((Fxx̄ − Fxx)X�0 + (Fx̄x̄ − Fxx̄)X�1)0 , (34b)

∂X
∂y(ζ)
∂u

= ζ
3
2 eu ((Fxx̄ − Fxx)X�0 + (Fx̄x̄ − Fxx̄)X�1)1 . (34c)

Substituting in (33a) we obtain

((Fxx̄ − Fxx − Fx)X�0 + (Fx̄x̄ − Fxx̄ − Fx̄)X�1)0 = 0

which is equivalent to

(Fxx̄ − Fxx − Fx)�0 = 0 and (Fx̄x̄ − Fxx̄ − Fx̄)�−1 = 0. (35)

Similarly (33b) is equivalent to

(Fxx̄ − Fxx − Fx)�1 = 0 and (Fx̄x̄ − Fxx̄ − Fx̄)�0 = 0. (36)
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Taking into account these equations we can write ∂y(ζ)
∂w(z) in terms of the second deriva-

tives of F only

∂y(ζ)
∂w(z) =

√
ζ ((Fxx̄ − Fxx)�0 + (Fx̄x̄ − Fxx̄)�−1) . (37)

The remaining component of the horizontality equation (32), taking into account the 
Christoffel (13) and the multiplication (18) operators on the cotangent, is

∂X
∂y(ζ)
∂w(z) = X(z)

zw′(z)z∂z
(
∂y(ζ)
∂w(z)

)
+

+ ζ
X(z)
zw′(z)

[(
zw′(z) ∂y(ζ)

∂w(z)

)
>0

− (zw′(z))>0
∂y(ζ)
∂w(z)+

+
(
z + eu

z

)
∂y(ζ)
∂w(z) + eu

z

∂y(ζ)
∂v

+ ∂y(ζ)
∂u

]
+

+ ζ

(
X>0(z)

∂y(ζ)
∂w(z)

)
<0

− ζ

(
X�0(z)

∂y(ζ)
∂w(z)

)
�0

. (38)

In this equation, the last line, substituting (37) and reorganizing its terms, is equal 
to the left-hand side, as given by (34a), plus the term

−ζ
3
2X(z)Fxx̄.

Hence (38) reduces to an equation which does not depend on X(z), i.e.

ζ
3
2 zw′(z)Fxx̄ = z∂z

(
∂y(ζ)
∂w(z)

)
+

+ ζ

[(
zw′(z) ∂y(ζ)

∂w(z)

)
>0

− (zw′(z))>0
∂y(ζ)
∂w(z)+

+
(
z + eu

z

)
∂y(ζ)
∂w(z) + eu

z

∂y(ζ)
∂v

+ ∂y(ζ)
∂u

]
. (39)

Using Lemma 19 we compute the derivative

z∂z
∂y(ζ)
∂w(z) =

= ζ
3
2

([
(Fxx − Fxx̄) [zw′(z)]�0 + Fxx̄ zw

′(z) − (Fxx̄ − Fxx)(z + eu

z
)
]

�0

+
[
Fxx̄ zw

′(z) + (Fx̄x̄ − Fxx̄) [zw′(z)]>0 − (Fx̄x̄ − Fxx̄)(z + eu

z
)
]
<0

)
.

Using (35)–(36) this may be rewritten as
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z∂z
∂y(ζ)
∂w(z)

= ζ3/2
([

−Fx [zw′(z)]�0 − (Fxx̄ − Fxx)z
]

�0
+

+
[
Fx̄ [zw′(z)]>0 − (Fx̄x̄ − Fxx̄)z

]
<0 +

+ Fxx̄ zw
′(z) − eu

z

(
[Fx]>0 + [Fx̄]�0

))
.

Using this and (31), observing that

−
[
Fx [zw′(z)]�0

]
�0

+
[
Fx̄ [zw′(z)]>0

]
<0 +

[
zw′(z)

(
[Fx]�0 + [Fx̄]<0

)]
>0

− [zw′(z)]>0

(
[Fx]�0 + [Fx̄]<0

)
= −

[
Fx [zw′(z)]�0 + Fx̄ [zw′(z)]>0

]
0
,

and taking into account (35)–(36), we finally rewrite (39) as

−
[
Fx [zw′(z)]�0 + Fx̄ [zw′(z)]>0 − (Fx̄ − Fx)(z + eu

z
)
]
0
−

− [Fxx̄ − Fxx − Fx]−1 = 0.

Due to Lemma 19, the first parenthesis is precisely − 
∮
z∂zF

dz
z = 0. We have completed 

the proof of (30).
Second part. Now we show that dy(ζ) is covariantly constant along the vector ∂

∂u iff

(Fxx̄ − Fxx − Fx)�1 = 0, (40a)

(Fx̄x̄ − Fxx̄ − Fx̄)�1 = 0, (40b)

∂u

[
eu

z
(Fx̄ − Fx − F )

]
0

= 0. (40c)

The components of the horizontality equation

∂

∂u
dy(ζ) = ζCu(dy(ζ))

are given by

∂

∂u

∂y(ζ)
∂w(z) = ζ

eu

z

(
∂y(ζ)
∂w(z) + ∂y(ζ)

∂v

)
, (41a)

∂

∂u

∂y(ζ)
∂v

= ζ
∂y(ζ)
∂u

, (41b)

∂

∂u

∂y(ζ)
∂u

= ζeu
((

w′(z)
(
∂y(ζ)
∂w(z) + ∂y(ζ)

∂v

))
0
− ∂y(ζ)

∂v

)
. (41c)
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The derivatives of the components of dy(ζ) are

∂

∂u

∂y(ζ)
∂w(z) = ζ3/2

([
eu

z
(Fxx̄ − Fxx)

]
�0

+
[
eu

z
(Fx̄x̄ − Fxx̄)

]
<0

)
, (42a)

∂

∂u

∂y(ζ)
∂v

= ζ3/2
[
eu

z
(Fx̄x̄ − 2Fxx̄ + Fxx)

]
0
, (42b)

∂

∂u

∂y(ζ)
∂u

= ζ1/2
[
eu

z
(Fx̄ − Fx)

]
0

+ ζ3/2
[
e2u

z2 (Fx̄x̄ − 2Fxx̄ + Fxx)
]
0
. (42c)

By a simple computation we obtain that Eqs. (41a)–(41b) are equivalent to

(Fxx̄ − Fxx − Fx)�1 = 0 and (Fx̄x̄ − Fxx̄ − Fx̄)�1 = 0.

Eq. (41c) is explicity written as

1
ζ

[
eu

z
(Fx̄ − Fx)

]
0

+
[
e2u

z2 (Fx̄x̄ − 2Fxx̄ + Fxx)
]
0

=

=
[
eu

z
zw′(z)([Fx]>0 + [Fx̄]�0)

]
0
− eu [Fx̄ − Fx]0 . (43)

Observe now that [
eu

z
zw′(z)([Fx]>0 + [Fx̄]�0)

]
0

=

=
[
eu

z

(
Fx [zw′(z)]�0 + Fx̄ [zw′(z)]<0)

)]
0

and, since

0 = 1
ζ

∮
z∂z

eu

z
F
δz

z
=

[
eu

z

(
Fx [zw′(z)]�0 + Fx̄ [zw′(z)]<0)

)]
0
−

− 1
ζ

[
eu

z
F

]
0
− eu [Fx̄ − Fx]0 −

[
e2u

z2 (Fx̄ − Fx)
]
0
,

we can rewrite Eq. (43) as

1
ζ

[
eu

z
(Fx̄ − Fx)

]
0

+
[
e2u

z2 (Fx̄x̄ − 2Fxx̄ + Fxx)
]
0

=

= 1
ζ

[
eu

z
F

]
0

+
[
e2u

z2 (Fx̄ − Fx)
]
0
.

To conclude, observe that both sides of this equation are derivatives in u
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1
ζ

[
eu

z
F

]
0

+
[
e2u

z2 (Fx̄ − Fx)
]
0

= ∂u
1
ζ

[
eu

z
F

]
0
,

1
ζ

[
eu

z
(Fx̄ − Fx)

]
0

+
[
e2u

z2 (Fx̄x̄ − 2Fxx̄ + Fxx)
]
0

= ∂u
1
ζ

[
eu

z
(Fx̄ − Fx)

]
0
,

hence it can be written as

∂u

[
eu

z
(Fx̄ − Fx − F )

]
0

= 0.

This ends the proof of (40).
Third part. Finally observe that, since C ∂

∂v
is the identity map and the Christoffel 

operator Γ ∂
∂v

is zero, the horizontality equation along the vector field ∂
∂v is simply

∂

∂v
dy(ζ) = ζdy(ζ).

Integrating we obtain

∂vy(ζ) = ζy(ζ) + k(ζ),

where k(ζ) is a constant depending only on ζ. Hence this horizontality equation is equiv-
alent to

(Fx̄ − Fx − F )0 = c (44)

for a constant c.
Combining the formulas (30), (40), (44) we obtain the desired result. �

Proof of Theorem 17. It is now easy to see that the yα̂(ζ) are deformed flat. The fact 
that they form a Levelt system, i.e. that the corresponding fundamental matrix can be 
written in a certain normal form, will be shown in the next section.

The functionals (21) are of the form (23)

yα̂(λ̂, ζ) = ζ−
1
2

2πi

∮
Fα̂(ζλ(z), ζλ̄(z))dz

z
+ φα̂(ζ) α̂ ∈ Ẑ

where the functions Fα̂(x, ̄x) and φα̂(ζ) are given by

Fα(x, x̄) = − (x + x̄)(α+1)

α + 1 exp( x̄− x

2 ) for α �= −1,

F−1(x, x̄) = − exp(−x)(log(x + x̄

x
) + Ein(−x) − 1) − exp( x̄− x

2 ),

Fv(x, x̄) = − exp(−x)(log(x + x̄ ) + Ein(−x) − 1) +

x
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+ exp(x̄)(log((x + x̄)x̄) − Ein(x̄) − 1),

Fu(x, x̄) = exp(x̄) − 1,

and

φv(ζ) = −2 log(ζ), φu(ζ) = 0, φα(ζ) = 0 for α ∈ Z.

These functions satisfy the following identities

Fα;x̄ − Fα;x − Fα = −δα,−1

x
for α ∈ Z,

Fv;x̄ − Fv;x − Fv = 1
x̄
− 1

x
,

Fu;x̄ − Fu;x − Fu = 1.

It follows that Eqs. (29) are satisfied, hence, by Proposition 20, the yα̂(ζ) are deformed 
flat. �
2.7. Levelt basis, monodromy and orthogonality

We now show that the deformed flat functions (21) actually form a Levelt basis of 
deformed flat coordinates.

It is convenient to rewrite the system (20b) on the tangent space by introducing the 
gradient ∇y := η∗(dy) of a functional y. Taking into account the symmetry of U and the 
antisymmetry of V we get

∂ζ∇y = (U + 1
ζ
V)(∇y). (45)

The operator V, defined in (19), is diagonal in the basis ∇tα̂ of TM0

V∇tα̂ = μα̂∇tα̂

for μα = −α − 1
2 , μv = 1

2 = −μu. Here U = E· denotes the multiplication by E on the 
tangent bundle TM0.

Eq. (45) is an operator-valued linear system on the complex plane with a regular 
singularity at ζ = 0 and an irregular singularity at ζ = ∞, depending on the point 
λ̂ ∈ M0.

In analogy with the finite-dimensional case we can define the “fundamental matrix” 
Y : TM0 → TM0 as the linear operator determined by

Y (∇tα̂) = ∇yα̂
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where yα̂ are the deformed flat functions defined in (21). Clearly Y depends on ζ and on 
the point λ̂ ∈ M0. The index α̂ is raised by the metric in flat coordinates (16).

The fundamental matrix satisfies the equation

∂ζY = (U + 1
ζ
V)Y, (46)

where the composition of operators on TM0 is understood.
Let R : TM0 → TM0 be a symmetric nilpotent operator defined by

R

(
∂

∂tα

)
= R

(
∂

∂u

)
= 0, R

(
∂

∂v

)
= 2 ∂

∂u
. (47)

Proposition 21. The fundamental matrix Y can be factorized as

Y = Θ ζVζR (48)

where Θ : TM0 → TM0 is the linear operator defined by

Θ(∇tα̂) = ∇θα̂

which is analytic at ζ = 0 and has leading term

Θ|ζ=0 ≡ Id. (49)

Proof. The functionals yα̂ are related to the θα̂, analytic in ζ, by the formulas (2). Taking 
the gradient and raising the indices in (2) we get

∇yα = ζ−α− 1
2 ∇θα,

∇yv = ζ
1
2 ∇θv,

∇yu = ζ−
1
2 ∇θu + 2ζ 1

2 log ζ ∇θv.

We obtain exactly these expressions if we evaluate (48) on ∇tα̂, taking into account that

ζVζR∇tα = ζ−α− 1
2∇tα,

ζVζR∇v = ζ
1
2∇v,

ζVζR∇u = ζ−
1
2∇u + 2ζ 1

2 log ζ ∇v.

The functionals θα̂ at ζ = 0 coincide with the flat coordinates

(θα̂)|ζ=0 = tα̂,

hence, taking the gradients at ζ = 0, we obtain (49). �
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Let us now comment on the normal form (48) in relation with the usual theory 
of matrix-valued rational linear equations on the complex plane. In analogy with the 
finite-dimensional case, we say that a system of the form (46) is resonant if two or 
more eigenvalues of V differ by a non-zero integer. In this sense our case is highly reso-
nant, since all eigenvalues μα̂ differ by non-zero integers, except for μv = μ−1 = 1

2 and 
μu = μ0 = −1

2 .
In finite dimensions, assuming V is diagonalizable and non-resonant, the normal form 

of the fundamental matrix in a neighborhood of ζ = 0 is

Y = Θ(ζ)ζV ,

with Θ uniquely determined by fixing Θ(0) = Id. In the resonant case the normal form 
of the fundamental matrix is (48), where one must allow for a nilpotent matrix R =
R1 + R2 + . . . , with R2n+1 symmetric, R2n skewsymmetric, and such that

ζVRkζ
−V = ζkRk

for k = 1, 2, . . .
It is easy to check that the operator R = R1 defined in (47) satisfies these require-

ments. Therefore we can conclude that the system (46) admits a normal form that is 
completely analogous to the Levelt normal form constructed in the finite dimensional 
case. Correspondingly we say that yα̂ is a Levelt system of deformed flat coordinates.

Note that the resonance of the system implies that there is a residual gauge freedom 
in the choice of R and Θ that we will exploit below.

The vector space V := Tλ̂M0, at a fixed point λ̂ ∈ M0 together with the bilinear form 
η and the operators R, V on V define the spectrum (or monodromy at ζ = 0) of the 
Frobenius manifold M0.

As expected from the general theory of Frobenius manifolds, the monodromy does 
not depend on the point λ̂ ∈ M0, as one can see from the fact that the operators V and 
R are constant in flat coordinates. This is indeed a reflection of the general property of 
isomonodromicity of the system (20).

Remark 22. Note that despite the high degree of resonance of V, in our case the matrix 
R is very simple. This type of monodromy, where R = R1, is typical of Frobenius 
manifolds originating from quantum cohomology. The potential of Frobenius manifold 
M0 can indeed be written (see [3])

F = 1
4πi

∮
Γ

∮
Γ

Li3
z̃(w1)
z̃(w2)

dw1dw2 + 1
2πi

∮
Γ

(
−et

0
z̃(w) + es

z̃(w)

)
dw

− es+t0 + (v + t−1

2 ) 1
4πi

∮
(t0 + log z̃(w)

w
)2dw + 1

2v
2(s + t0)
Γ
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where we have used a slightly different set of flat coordinates (tα, v, s) where s := u − t0

and z̃(w) := z(w)e−t0 . In this form the potential is given by a cubic part plus a deforma-
tion with possibly exponential dependence on the variables s and t0. The deformation 
is killed by performing the limit s, t0 → −∞ and sending the remaining variables to 0. 
This is called point of classical limit of the Frobenius manifold and, in the quantum 
cohomology case, corresponds to the point where the quantum cup product coincides 
with the ordinary cup product in cohomology. The structure constants at the point of 
classical limit are, in flat coordinates

cαβγ = δβ+γ−α,−1(H−β−1 + H−γ−1 −H−α−1),

cuαβ = δα,β , cα̂
vβ̂

= δα̂,β̂

and zero otherwise. Here Hn = 1 for n � 0, Hn = 0 otherwise. As proved in [7], at the 
point of classical limit λ̂class ∈ M0 the system (46) is automatically in normal form since

lim
λ̂→λ̂class

U = R = R1

and by isomonodromicity it determines the spectrum of the Frobenius manifold. In the 
case of a quantum cohomology the operator R corresponds to the multiplication by the 
Chern class c1(X) in ordinary cohomology of X. It would be interesting to understand 
if the Frobenius manifold M0 admits a (quantum) cohomological origin as suggested by 
these observations.

Remark 23. It was shown in [7] that the Levelt fundamental matrix (48) can be chosen 
in such a way that the analytic part Θ satisfies the orthogonality condition

Θ∗(−ζ)Θ(ζ) ≡ 1. (50)

This condition is not satisfied by our choice of fundamental solution Y , since we have 
preferred to keep a simpler form for the deformed flat coordinates (21). However it is 
possible to obtain an orthogonal fundamental matrix Ỹ by a simple modification of Y . 
Note that, while in the nonresonant case the orthogonality condition follows from the 
symmetry properties of U and V in (46), in the presence of resonances it must be imposed 
as an external condition on Θ.

Let us first define the following functions θ̃ on M0 analytic in the parameter ζ in a 
neighborhood of ζ = 0

θ̃α(ζ) = − (2α)!!
2πi

∮
|z|=1

[eλ+λ̄
2 ζ

ζα+1 + e−
λ+λ̄

2 ζ

(−ζ)α+1

]
(+)

e
λ̄−λ

2 ζ dz

z
for α � 0, (51a)

θ̃−1(ζ) = − 1 ∮
e−λζ

(
log

(
1 + λ̄

)
+ Ein(−λζ) − Ein

(
−λ + λ̄

ζ

))
dz

, (51b)
2πi λ 2 z
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θ̃α(ζ) = θα(ζ) = − 1
2πi

∮
|z|=1

(λ + λ̄)α+1

α + 1 e
λ̄−λ

2 ζ dz

z
for α � −2, (51c)

θ̃v(ζ) = 1
2πi

∮ [
−e−λζ

(
log

(
1 + λ̄

λ

)
+ Ein(−λζ) − Ein

(
−λ + λ̄

2 ζ

))
+ (51d)

+ eλ̄ζ
(

log(λ̄(λ + λ̄)) − Ein(λ̄ζ) − Ein
(
λ + λ̄

2 ζ

))]
dz

z
, (51e)

θ̃u(ζ) = θu(ζ) = 1
2πi

∮
|z|=1

eλ̄ζ − 1
ζ

dz

z
, (51f)

and correspondingly

ỹα(ζ) = ζα+ 1
2 θ̃α(ζ),

ỹv(ζ) = ζ−
1
2 θ̃v(ζ) + 2ζ 1

2 log ζ θ̃u(ζ),

ỹu(ζ) = ζ
1
2 θ̃u(ζ).

The bracket [ ](+) in (51a) denotes the projection to non-negative powers of ζ. Explicitly 
one has

[eλ+λ̄
2 ζ

ζα+1 + e−
λ+λ̄

2 ζ

(−ζ)α+1

]
(+)

= 2
∑
n�0

ζ2n

(2n + α + 1)!

(
λ + λ̄

2

)2n+α+1

.

The corresponding fundamental matrix Ỹ and its analytic part Θ̃, which are operators 
on TM0 defined by

Ỹ (∇tα̂) = ∇ỹα̂, Θ̃(∇tα̂) = ∇θ̃α̂,

are related as before by

Ỹ = Θ̃ ζVζR.

One can check that the fundamental matrix Ỹ is obtained from Y by the right-
composition with a constant invertible operator C on TM0

Ỹ = Y C.

In components, where C(∇tα̂) = ∇tγ̂ C
γ̂
α̂, it is given by

Cα
β = (2β)!!

(2α)!!
∑
n�0

δα,β+2n for α, β � 0,

Cα
−1 = (−1)α cα+1 − 1 for α � 0,
(2α)!!
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Cα
v = 1 + (−1)α

2
cα+1 − 1
(2α)!! for α � 0,

Cv
v = Cu

u = Cα
α = 1 for α � −1,

all other components being zero. We have

ỹα̂(ζ) =
∑
γ̂∈Ẑ

yγ̂(ζ)C γ̂
α̂, θ̃α̂(ζ) =

∑
γ̂∈Ẑ

θγ̂(ζ)C γ̂
α̂ ζμγ̂−μα̂ .

The formulas above show that ỹα̂ are a Levelt system of deformed flat coordinates. 
Our choice of C guarantees that they satisfy the orthogonality condition.

Proposition 24. The family of functionals 
{
ỹα̂(λ̂, ζ)

}
α̂∈Ẑ

over M0 × C× forms a Levelt 
system of deformed flat coordinates on M0 at ζ = 0 satisfying the orthogonality condition

Θ̃∗(−ζ)Θ̃(ζ) ≡ 1

where Θ̃(ζ) is holomorphic in ζ and Θ̃(0) = 1.

Proof. We only need to prove that the orthogonality holds. This is equivalent to showing 
that

< dθ̃α̂(−ζ), dθ̃β̂(ζ) >= ηα̂β̂ . (52)

This is essentially a long computation using the explicit expressions (51). We will not 
reproduce them here. �
2.8. The principal hierarchy

Recall that the flat metric η and the intersection form γ on M0 (see [3]) define two 
Poisson brackets of hydrodynamic type on the loop space LM0 which coincide with those 
given in Proposition 1.

The Hamiltonian densities θα,p define, through the Poisson bracket {, }1, an infinite 
family of commuting flows on LM0, which form the Principal hierarchy corresponding 
to the Frobenius manifold M0. More precisely the Principal hierarchy of M0 is given by 
the Hamiltonian vector fields on LM0

∂

∂tα̂,p
· = {·, Hα̂,p}1

where the Hamiltonians are the functionals on LM0 defined by

Hα̂,p =
∫

θα̂,p+1 dx.
S1
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In the first part of this work we have defined a family of commuting vector fields, 
the extended dispersionless 2D Toda hierarchy, on the loop space LM1 of the space M1
of pairs of “holomorphic” 2D Toda Lax symbols (λ(z), ̄λ(z)) with a winding numbers 
condition. Since M0 is an open subset of M1, the extended 2D Toda hierarchy can be 
restricted to LM0. Moreover its Hamiltonian densities and the Poisson bracket {, }1 coin-
cide with those of the Principal hierarchy, hence we clearly have that the two hierarchies 
coincide.

Proposition 25. The extended dispersionless 2D Toda hierarchy, when restricted to LM0, 
coincides with the Principal hierarchy of the Frobenius manifold M0.

Remark 26. Defining the functions on M0

Ωα̂,p;β̂,q :=
q∑

m=0
(−1)m < ∇θα̂,p+m+1,∇θβ̂,q−m >

one can easily prove that

∂xΩα̂,p;β̂,q = ∂θα̂,p

∂tβ̂,q
.

This in particular shows that the Hamiltonian densities hα̂,p = θα̂,p+1 are densities of 
conserved quantities for all the flows of the hierarchy, and this in turn implies that the 
Hamiltonians are in involution w.r.t. both Poisson brackets.

As usual the symmetry of ∂tα̂,pΩβ̂,q;γ̂,r under the exchanges of the three pairs of indices 
implies that with a solution λ̂(t, z) of the hierarchy one can associate a tau function such 
that

Ωα̂,p;β̂,q = ∂2 log τ
∂tα̂,p∂tβ̂,q

.

For further details we refer to [9].

Remark 27. In Remark 23 an alternative choice of deformed flat coordinates ỹα̂(ζ) was 
made such that the generating functions of the Hamiltonian densities satisfy the orthog-
onality condition (52). We call the associated hierarchy

∂

∂t̃α̂,p
· = {·, H̃α̂,p}1

with the Hamiltonians

H̃α̂,p =
∫

θ̃α̂,p+1 dx
S1
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the “orthogonal” Principal hierarchy. The Hamiltonian densities θ̃α̂,p are defined as before 
by the expansion

θ̃α̂(ζ) =
∑
p�0

θ̃α̂,pζ
p.

Their explicit expression is

θ̃α̂,p = 1
2πi

∮
|z|=1

Q̃α̂,p
dz

z

where

Q̃α,p = −2(2α)!!
∑

0�n� p
2

(λ̄− λ)p−2n(λ + λ̄)2n

(2n + α + 1)!(p− 2n)! for α � 0, (53a)

Q̃−1,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp

)
+ 2−p

p−1∑
l�0

(λ̄− λ)l(−λ̄− λ)p−lcp−l

l!(p− l)! , (53b)

Q̃α,p = Qα,p = − (λ + λ̄)α+1

α + 1
1
p!

(
λ̄− λ

2

)p

for α � −2, (53c)

Q̃v,p = − (−λ)p

p!

(
log

(
1 + λ̄

λ

)
+ cp

)
−

p−1∑
l=0

(−λ)l

l!
(λ + λ̄)p−l

(2p− 2l)!!(p− l) + (53d)

+ (λ̄)p

p!
(
log(λ̄(λ + λ̄)) − cp

)
+

p−1∑
l=0

λ̄l

l!
(−λ− λ̄)p−l

(2p− 2l)!!(p− l) , (53e)

Q̃u,p = Qu,p = λ̄p+1

(p + 1)! . (53f)

The “orthogonal” Principal hierarchy has a Lax representation

∂λ

∂t̃α̂,p
= {−(Q̃α̂,p)−, λ},

∂λ̄

∂t̃α̂,p
= {(Q̃α̂,p)+, λ̄}, (54)

and satisfies the same bi-Hamiltonian recursion relations as before

{·, H̃α,p}2 = (α + p + 2){·, H̃α,p+1}1, (55)

{·, H̃v,p}2 = (p + 1){·, H̃v,p+1}1 + 2{·, H̃u,p}1, (56)

{·, H̃u,p}2 = (p + 2){·, H̃u,p+1}1. (57)

Finally observe that the “orthogonal” densities θ̃α̂,p are related to the θα̂,p by

θ̃α̂,p =
∑

θγ̂,p−μγ̂+μα̂
C γ̂

α̂

μγ̂�p+μα̂
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where the matrix C has been defined in Remark 23; note that the sum on the right-hand 
side is always finite.

3. Concluding remarks

In the first part of this article we have defined, by assuming certain analytical prop-
erties of the Lax symbols λ(z), λ̄(z), a new dispersionless hierarchy which extends the 
dispersionless 2D Toda hierarchy. In this direction the most important open problem is 
the construction of the dispersive extended 2D Toda hierarchy, i.e. a hierarchy contain-
ing the difference equations of the 2D Toda hierarchy, introduced in terms of infinite 
matrices by Ueno and Takasaki [15] or equivalently in terms of difference operators, 
and an infinite number of extended flows, some of these including logarithmic terms in 
the spirit of [4,2] and such that its semiclassical limit would coincide with the extended 
dispersionless 2D Toda defined here.

In the second part of the paper we have considered the relationship of the extended 
dispersionless 2D Toda hierarchy with the infinite-dimensional Frobenius manifold M0
defined in [3]. In particular we have constructed the deformed flat connection ∇̃ on 
M0 × C

× and provided an explicit basis yα̂ of deformed flat coordinates. The Princi-
pal hierarchy so obtained on LM0 coincides with the extended dispersionless 2D Toda. 
The analysis of the monodromy at ζ = 0 of the ζ-flatness equation indicates that the 
Frobenius manifold M0 has the typical features of quantum cohomology, including a 
point of classical limit which explains the simple resonance pattern. An interesting open 
problem would be to understand if these hints can be extended to a proper (quantum) 
cohomological interpretation of M0.

Another important direction of research, will be addressed in subsequent publications, 
is the study of the properties of the solutions of the principal hierarchy and of their tau 
functions. Firstly, we plan to study the solution obtained by extending the potential of 
the Frobenius manifold to the descendent time variables tα̂,p of the principal hierarchy, 
the so-called topological solution, which is of particular interest, especially in connection 
with possible enumerative applications. Secondly, the behavior of a generic solution in 
the neighborhood of a singular point is expected to have a qualitatively more complicated 
structure than the 1 + 1 case [8], due to the presence of a continuous family of Riemann 
invariants.

Related important problems we plan to study are the generalized Stokes phenomenon 
associated with the behavior of operator-valued linear singular systems on the complex 
plane and the classification of (classes of) infinite-dimensional Frobenius manifolds.

Acknowledgments

G.C. acknowledges the hospitality of IPhT in Saclay, of IMPA in Rio de Janeiro and 
of SISSA in Trieste; the support of the ESF-MISGAM exchange grant n. 2324, of the 
INDAM “Progetto Giovani” grant and in particular that of Prof. J.P. Zubelli.



G. Carlet, L.P. Mertens / Advances in Mathematics 278 (2015) 137–181 181
L. Ph. M. is grateful to Prof. B. Dubrovin for being a source of guidance and inspiration 
during the years of his Ph.D., and for introducing him to the beautiful mathematics 
of Frobenius Manifolds. He would like to thank J.P. Zubelli for valuable and pleasant 
discussions, and for giving him the opportunity to join his research group at IMPA. 
L. Ph. M. would also like to acknowledge A. Brini, H. Bursztyn, M. Cafasso, R. Heluani 
and P. Rossi for insightful discussions. He acknowledges the support of MISGAM for his 
visit to IPhT, Paris; the support of INDAM for his visit to CMUC, Coimbra and the 
support of MEC (Ministério da Educação) and MCT (Ministério da Ciência e Tecnologia) 
through CAPES – PNDP (Fundação Coordenação de Aperfeiçoamento de Pessoal de 
Nível Superior – Programa Nacional de Pós–Doutorado) during his stay at IMPA. Finally, 
he would like to acknowledge IMPA, for giving him the opportunity of doing mathematics 
in a professional and friendly environment.

References

[1] G. Carlet, The Hamiltonian structures of the two-dimensional Toda lattice and R-matrices, Lett. 
Math. Phys. 71 (3) (2005) 209–226.

[2] G. Carlet, The extended bigraded Toda hierarchy, J. Phys. A 39 (30) (2006) 9411–9435.
[3] G. Carlet, B. Dubrovin, L.P. Mertens, Infinite-dimensional Frobenius manifolds for 2 + 1 integrable 

systems, Math. Ann. 349 (2011) 75–115.
[4] G. Carlet, B. Dubrovin, Y. Zhang, The extended Toda hierarchy, Mosc. Math. J. 4 (2) (2004) 

313–332, 534.
[5] R. Dijkgraaf, H. Verlinde, E. Verlinde, Topological strings in d < 1, Nuclear Phys. B 352 (1) (1991) 

59–86.
[6] B. Dubrovin, Geometry of 2D topological field theories, in: Integrable Systems and Quantum 

Groups, Montecatini Terme, 1993, in: Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, 
pp. 120–348.

[7] B. Dubrovin, Painlevé transcendents in two-dimensional topological field theory, in: The Painlevé 
Property, in: CRM Ser. Math. Phys., Springer, New York, 1999, pp. 287–412.

[8] B. Dubrovin, On universality of critical behaviour in Hamiltonian PDEs, in: Geometry, Topology, 
and Mathematical Physics, in: Amer. Math. Soc. Transl. Ser. 2, vol. 224, Amer. Math. Soc., Provi-
dence, RI, 2008, pp. 59–109.

[9] B. Dubrovin, Y. Zhang, Normal forms of integrable PDEs, Frobenius manifolds and Gromov–Witten 
invariants, preprint, arXiv:math/0108160.

[10] B. Dubrovin, Y. Zhang, Virasoro symmetries of the extended Toda hierarchy, Comm. Math. Phys. 
250 (1) (2004) 161–193.

[11] T. Eguchi, S.-K. Yang, The topological CP1 model and the large-N matrix integral, Modern Phys. 
Lett. A 9 (31) (1994) 2893–2902.

[12] T.E. Milanov, H.-H. Tseng, The spaces of Laurent polynomials, Gromov–Witten theory of 
P1-orbifolds, and integrable hierarchies, J. Reine Angew. Math. 622 (2008) 189–235.

[13] A. Raimondo, Frobenius manifold for the dispersionless Kadomtsev–Petviashvili equation, Comm. 
Math. Phys. 311 (3) (2012) 557–594.

[14] K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (5) 
(1995) 743–808.

[15] K. Ueno, K. Takasaki, Toda lattice hierarchy, in: Group Representations and Systems of Differen-
tial Equations, Tokyo, 1982, in: Adv. Stud. Pure Math., vol. 4, North-Holland, Amsterdam, 1984, 
pp. 1–95.

[16] E. Witten, Two-dimensional gravity and intersection theory on moduli space, in: Surveys in Differ-
ential Geometry, Cambridge, MA, 1990, Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310.

[17] C.-Z. Wu, D. Xu, A class of infinite-dimensional Frobenius manifolds and their submanifolds, Int. 
Math. Res. Not. IMRN (19) (2012) 4520–4562.

[18] C.-Z.Wu, D. Zuo, Infinite-dimensional Frobenius manifolds underlying the Toda lattice hierarchy, 
Adv. Math. 255 (2014) 487–524.

http://refhub.elsevier.com/S0001-8708(15)00104-8/bib433035s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib433035s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib433037s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib43444D3130s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib43444D3130s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib43445A3034s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib43445A3034s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib4456563931s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib4456563931s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443936s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443936s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443936s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443939s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443939s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443038s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443038s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib443038s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib445A3031s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib445A3031s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib445A3034s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib445A3034s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib45593934s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib45593934s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib4D543038s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib4D543038s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib5261693130s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib5261693130s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib54543935s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib54543935s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib55543834s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib55543834s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib55543834s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib5769743931s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib5769743931s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib57583131s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib57583131s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib575A3134s1
http://refhub.elsevier.com/S0001-8708(15)00104-8/bib575A3134s1

	Principal hierarchies of inﬁnite-dimensional Frobenius manifolds: The extended 2D Toda lattice
	0 Introduction
	1 The extended dispersionless 2D Toda hierarchy
	1.1 The dispersionless 2D Toda hierarchy
	1.2 Analytic setting
	1.3 The extended hierarchy: Lax formulation
	1.4 The extended hierarchy: bi-Hamiltonian formulation
	1.5 Tau symmetry

	2 The principal hierarchy of M0
	2.1 The manifold M0 as a bundle on the space of parametrized simple curves
	2.2 The metric
	2.3 The Levi-Civita connection
	2.4 Flat coordinates
	2.5 The associative product and the deformed ﬂat connection
	2.6 Deformed ﬂat coordinates
	2.7 Levelt basis, monodromy and orthogonality
	2.8 The principal hierarchy

	3 Concluding remarks
	Acknowledgments
	References


