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EXTENDED TODA LATTICE

G. Carlet∗

We introduce nonlocal flows that commute with those of the classical Toda hierarchy. We define a logarithm

of the difference Lax operator and use it to obtain a Lax representation of the new flows.
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The Toda lattice equation is a nonlinear evolution equation introduced by Toda [2] describing an infinite
system of masses on a line that interact through an exponential force. In suitable coordinates, it can be
written as the system

∂

∂t
un = evn+1 − evn ,

∂

∂t
vn = un − un−1,

(1)

where n ∈ Z. It was soon realized that this equation is completely integrable, i.e., it admits infinite
conserved quantities, can be solved for rapidly decreasing boundary conditions through the inverse scattering
transform [3], and admits explicit quasiperiodic solutions by algebro-geometric methods [4]. It has found
important applications in many different fields, in particular, in the theory of Gromov–Witten invariants
of CP 1, where the present extension plays a particular role [5].

The Toda lattice equation can be seen as the first element of a whole hierarchy of commuting flows,
the Toda lattice hierarchy. We can write all the flows using the Lax representation [3]

ε
∂L

∂tq
=

[
1

(q + 1)!
(Lq+1)+, L

]
,

where L is the difference operator

L = Λ+ u + evΛ−1.

Here we use a notation (see [6]) with a continuous space variable x = nε, where ε is the lattice spacing and
t0 = εt, i.e., u(x) = un and v(x) = vn for x = εn. We let Λ denote the shift operator Λf(x) = f(x+ε). Given
any difference operator A =

∑
k∈Z

akΛk, we let A+ and A− denote the respective positive and negative
parts, i.e., A+ =

∑
k≥0 akΛk, A = A+ + A−. The first flow t0 is simply given by Toda equations (1); as a

further example, the second flow is given by

εut1(x) =
1
2
(
(u(x + ε) + u(x))ev(x+ε) − (u(x − ε) + u(x))ev(x)

)
,

εvt1(x) =
1
2
(
ev(x+ε) − ev(x−ε) + u2(x) − u2(x − ε)

)
.
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This hierarchy is Hamiltonian with respect to two different Hamiltonian structures [7]. In our contin-
uous formulation, the first is given by the Poisson bracket

{u(x), v(y)}1 =
1
ε
(δ(x − y + ε)− δ(x − y)),

{u(x), u(y)}1 = {v(x), v(y)}1 = 0.
(2)

The second Poisson bracket is

{u(x), u(y)}2 =
1
ε
(ev(x+ε)δ(x − y + ε)− ev(x)δ(x − y − ε)),

{u(x), v(y)}2 =
1
ε
u(x)(δ(x − y + ε)− δ(x − y)),

{v(x), v(y)}2 =
1
ε
(δ(x − y + ε)− δ(x − y − ε)).

(3)

The equations of motion can be written as

d

dtq
· = { · , h̄q}1 =

1
q + 1

{ · , h̄q−1}2, (4)

where h̄q =
∫

hq dx and the Hamiltonians are given as traces of powers of the Lax operator L,

hq =
1

(q + 2)!
Res(Lq+2). (5)

Given any difference operator A =
∑

k∈Z
akΛk, its residue is defined by ResA = a0.

The presence of a two Hamiltonian structures permits obtaining all the Hamiltonians through Lenard–
Magri [8] recursive relation (4) starting from a Casimir of the first Poisson bracket. In our case, if we
start from the Casimir h−1 = u, we obtain all the Hamiltonians defined above. Moreover, this procedure
guarantees that all the resulting Hamiltonians commute among themselves.

To see why and how this hierarchy of equations could be extended, we consider its dispersionless limit
that is obtained by setting ε → 0. It can be shown [6] that the Lax representation of the dispersionless
flows is given by

∂L
∂tq

=
{

1
(q + 1)!

(Lq+1)+,L
}

.

In this case, L is a function of x and of the additional variable p,

L = p + u(x) + ev(x)p−1,

and the bracket is

{B, C} = p
∂B
∂p

∂C
∂x

− p
∂C
∂p

∂B
∂x

,

where B and C are functions of p and x and (B)+ means that only nonnegative powers of p are considered
in the power series expansion of B.

The dispersionless Hamiltonians and Poisson brackets are simply obtained from their dispersive coun-
terparts (5) and (2), (3) by setting ε → 0. In particular, the same recursive relation (4) as above holds in
the dispersionless case.
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In [9], it was noted that for the genus-zero approximation of the topological CP 1 model, new flows can
be added to the usual dispersionless flows given above; their Lax representation is

∂L
∂t̃q

=
{
2
q!
(Lq(logL − cq))+,L

}
, (6)

where cq =
∑q

k=1(1/k), c0 = 0. The logarithm of L must be understood as

logL =
1
2
v +

1
2
log(1 + up−1 + evp−2) +

1
2
log(1 + ue−vp+ e−vp2),

where the first logarithm in the r.h.s. is seen as an expansion in negative powers of p and the second one in
positive powers of p.

These flows can be expressed in Hamiltonian form by

d

dt̃q
· = { · , ¯̃hdisp

q

}
1
,

where the Poisson bracket is the dispersionless limit of (2) and the dispersionless Hamiltonians are given
by

h̃disp
q =

2
(q + 1)!

Resp=0

[
p−1Lq+1(logL − cq+1)

]
.

But these Hamiltonians satisfy a recursive relation that differs from the previous relation (4):

{ · , ¯̃hq−1}2 = q{ · , ¯̃hq}1 + 2{ · , h̄q−1}1. (7)

We briefly mention that in the dispersionless limit, all the flows can be introduced quite differently, using
the relation between systems of hydrodynamic type and Frobenius manifolds [10]. The dispersionless Toda
Poisson pencil is associated with a Frobenius manifold characterized by the free energy F = u2v/2+ev. All
the Hamiltonians of the system can then be obtained by expanding the so-called deformed flat coordinates
of the Frobenius manifold. The relation between the dispersive and dispersionless versions of the Toda
hierarchy is just a particular instance of the classification program for bi-Hamiltonian integrable hierarchies
proposed in [11] based on reconstructing the entire dispersive hierarchy starting from its dispersionless limit.

We thus see that in the dispersionless case, the Toda hierarchy has two perfectly well-defined sequences
of flows, all commuting among themselves, denoted by the times tq and t̃q for q ≥ 0. The classical dispersive
flows corresponding to the times tq defined above reduce to the corresponding flows in the dispersionless
hierarchy for ε → 0. In the classical dispersive formulation, on the other hand, there is apparently no flow
reducing to the dispersionless flows corresponding to the times t̃q for ε → 0.

In analogy with the Lenard–Magri procedure for the first set of Hamiltonians, we expect to find the
second set of flows of the dispersive hierarchy from another Casimir of the first Poisson bracket by applying
recursive relation (7) (this time with the full dispersive brackets). The first Poisson bracket in fact admits
a second Casimir: h̃−1 = v. But recursive relation (7) fails to work in this case, as can be easily verified:
the reason is that h̃−1 is a Casimir of both Poisson brackets. This phenomenon is called “resonance” of the
Poisson pencil.

But we can introduce an ansatz for the first nontrivial Hamiltonian h̃0; it was given in [12] and is such
that the corresponding flow coincides with the x translation,

h̃0 = uΛ(Λ− 1)−1εvx. (8)
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This Hamiltonian is nonlocal because it contains the inverse of the discrete derivative, which can be written
as a formal series in ε,

(Λ− 1)−1εvx =
∑
k≥0

Bk

k!
(ε∂x)kv,

where the Bernoulli numbers Bk are defined by

x

ex − 1
=

∑
k≥0

Bk

k!
xk.

Starting from this ansatz, we can define all the Hamiltonians h̃q using recursive relation (7) and show that
they commute among themselves and with all classical Toda flows.

To have an explicit form for these new flows, it is important to find their Lax representation. Consid-
ering dispersionless Lax representation (6), we expect that introducing a logarithm of the Lax operator L

is necessary. Such operator can be defined by the dressing formalism. It is well known [13] that L can be
written as the dressing of the shift operators Λ and Λ−1,

L = PΛP−1 = QΛ−1Q−1, (9)

where

P =
∑
k≥0

pkΛ−k, p0 = 1,

Q =
∑
k≥0

qkΛk.

By substitution in definition (9), the functions pk and qk can be found in terms of u and v.
Noting that Λ = eε∂x , we are led to define two different logarithms as

log+ L = Pε∂P−1 = ε∂ + PεP−1
x ,

log− L = −Qε∂Q−1 = −ε∂ − QεQ−1
x .

These logarithms are both differential–difference operators because of the presence of ε∂. Seeking an
expression like (6) and needing to make sense of the ( · )+ part, we want a purely difference operator for
the logarithm, which we define by

logL =
1
2
log+ L +

1
2
log− L = − ε

2
(PxP−1 − QxQ−1).

In this definition, the derivative drops out, and we obtain a difference operator of the form

logL =
∑
k∈Z

wkΛk.

We want to express the coefficients wk in terms of the variables u and v. This is indeed possible (see [1]
for a proof). Essentially, all the previously defined logarithms, by definition, commute with L, e.g.,

[log+ L, L] = 0. (10)
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Substituting

log+ L = ε∂ + 2
∑

k≤−1

wkΛk

in (10), we can solve it recursively and express the coefficients wk for k ≤ −1 as formal power series in ε

with coefficients that are differential polynomials in u and v. The analogous expression for log− L gives the
coefficients wk for k ≥ 0. The first few examples are

w−1 =
1
2
(Λ− 1)−1εux,

w0 =
1
2
Λ(Λ− 1)−1εvx,

w1 =
1
2
Λe−v(Λ− 1)−1εux.

We note that, in general, this is not possible for the coefficients pk and qk of the dressing operators.
Using this definition of the logarithm of L, we can give the Lax representation for the new flows, which

is formally analogous to the dispersionless Lax representation,

ε
∂L

∂t̃q
= [Aq, L], Aq =

2
q!
[Lq(logL − cq)]+,

Here, Aq is a difference operator of infinite order. Equivalently, we can use the operator

Ãq =
2
q!
[Lq(logL − cq)]+ − 1

q!
Lq(log− L − cq),

which also contains a differential part but is of finite order. It gives the same Lax equations because it
differs from Aq by a part that commutes with L. For example, the first two Lax operators are given by

Ã0 = ε∂,

Ã1 = Λ(ε∂ − 1) + Λ(Λ− 1)−1εux + u(ε∂ − 1) + ev(ε∂ + 1− (Λ− 1)−1εvx)Λ−1.

As expected, the first corresponds to the x translations, and the second gives the first nontrivial extended
Toda flow

εut̃1 = (Λ− 1)(−ev(Λ−1 − 1)−1εvx)− 2(Λ− 1)ev + ε

(
u2

2
+ ev

)
x

,

εvt̃1 = ((Λ−1 − 1)−1εvx)(Λ−1 − 1)u + εvx(Λ−1u) + Λ−1εux + εux + 2(Λ−1 − 1)u.

(11)

We can also give an explicit expression for the Hamiltonians in analogy with the dispersionless case,

h̃q =
2

(q + 1)!
Res[Lq+1(logL − cq+1)].

These are exactly the Hamiltonians defined above by the recursive relation and ansatz (8) up to total
derivatives.
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The new flows of this extended Toda hierarchy are nonlocal but nevertheless have many of the nice
properties that are expected from a completely integrable system, such as the existence of multisolitonic
solutions. For example, the evolution of a simple soliton under nonlocal flows (11) is given by

u(x, t̃1) = (Λ− 1)
cosh((1/ε)((x + λ1 t̃1) log z1 + t̃1(−z1 + z−1

1 )))
cosh((1/ε)((x + λ1t̃1) log z1 + t̃1(−z1 + z−1

1 ))− log z1)
,

v(x, t̃1) = (1− Λ−1)2 log
[
2 cosh

(
1
ε
(x + λ1t̃1) log z1 +

1
ε
t̃1(−z1 + z−1

1 )
)]

,

where λ1 = z1 + z−1
1 and z1 is a parameter. As usual, this is simply obtained by Darboux transformations

of a particular constant solution.
We expect that the algebro-geometric quasiperiodic solutions should also have a nice behavior under

these flows, but this problem is still under consideration. Further generalization to the multicomponent
case is in progress.

All the proofs of the above statements will appear in [1].

REFERENCES

1. G. Carlet, B. Dubrovin, and Y. Zhang, “Extended Toda hierarchy,” (to appear).

2. M. Toda, J. Phys. Soc. Japan, 23, 501–506 (1967); Progr. Theor. Phys. Suppl., No. 45, 174 (1970).

3. H. Flaschka, Progr. Theor. Phys., 51, 703–716 (1974).

4. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ. Math. Surv., 31, 59–146 (1976); E. Date and S. Tanaka,

Progr. Theor. Phys., 55, 457–465 (1976); Progr. Theor. Phys. Suppl., No. 59, 107–125 (1976); I. M. Krichever,

Russ. Math. Surv., 33, No. 4, 255–256 (1978).

5. E. Getzler, “The equivariant Toda lattice I,” math.AG/0207025 (2002); “The equivariant Toda lattice II,”

math.AG/0209110 (2002).

6. K. Takasaki and T. Takebe, Lett. Math. Phys., 28, No. 3, 165–176 (1993).

7. B. A. Kupershmidt, Astérisque, 123, 1–212 (1985).
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