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Abstract
We prove that the Hirota quadratic equations of Milanov and Tseng define
an integrable hierarchy which is equivalent to the extended bigraded Toda
hierarchy (EBTH). In particular this confirms a conjecture that relates the total
descendent potential of the orbifold Ck,m with a tau function of the EBTH.

PACS numbers: 02.30.Ik, 02.40.−k

1. Introduction

The (k, m)-extended bigraded Toda hierarchy (EBTH), where k, m are two positive integers,
was introduced in [4] as a generalization of the extended Toda hierarchy [6] with k + m
dependent variables. The main motivation was the attempt to define an integrable hierarchy that
would encode the relations between the Gromov–Witten invariants of certain CP1 orbifolds,
in analogy with the fact that the Gromov–Witten potential of CP1 is actually a tau function of
the extended Toda hierarchy [9, 10, 14].

Indeed, the general problem of associating an explicit integrable hierarchy to the Gromov–
Witten theory of a given target space X has been solved only in a small number of examples.
These include, beyond the CP1 case just mentioned, the X = pt case where the relevant
integrable system, according to the Kontsevich–Witten theorem, is the KdV hierarchy, and
few other cases mostly related to the equivariant version of the theory under a complex
torus action. In this context, recently some progress has been made in the case of the local
Gromov–Witten theory of CP1, in relation with the Ablowitz–Ladik hierarchy [2, 3].

In a further important case, Milanov and Tseng in [16] considered the orbifold Ck,m

obtained from CP1 by adding two orbifold points of order k, m respectively. They proved
that the orbifold quantum cohomology ring of Ck,m coincides with the Frobenius manifold
Mk,m of degree (k, m) Laurent polynomials [8]. Moreover they showed that the Givental total
descendent potential DMk,m associated with Mk,m satisfies an Hirota quadratic equation (HQE)
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and conjectured that such an equation would be equivalent to the (k, m)-EBTH. In this
work we indeed show that the HQEs of Milanov and Tseng are equivalent to the EBTH as
formulated in [4]. Since, up to some details mentioned in [16], the potential DMk,m coincides
with the generating function of Gromov–Witten invariants of Ck,m, one concludes that such a
generating function is a tau function of the (k, m)-EBTH.

The EBTH can be thought of as the analogue, in the 2D Toda hierarchy [18] world, of
the Gelfand–Dickey reductions of the KP hierarchy. However, only the ‘standard’ flows of
the EBTH are obtained by restriction of the 2D Toda flows, while the so-called ‘logarithmic’
flows have to be introduced independently, and can be defined only when the discrete space
variable is replaced with a continuous one.

The fact that the logarithmic flows of the EBTH do not originate as restrictions of the 2D
Toda flows, points to the existence of a larger hierarchy, which we might call ‘extended 2D
Toda’, defined for a continuous space variable, which should include the usual 2D Toda flows
and contain extra flows of logarithmic type. At the dispersionless level, such an extension has
been recently found in [7], as the principal hierarchy associated with the infinite-dimensional
Frobenius manifold discovered in [5]. The definition of a suitable dispersive version of such
hierarchy is still an open problem.

The presence of the logarithmic flows makes it non-trivial to generalize some well-known
construction for the Gelfand–Dickey, KP or 2D Toda hierarchies to the extended bigraded
Toda. In the case of the extended Toda hierarchy (ETH), the problem of finding HQEs has
been originally solved by Milanov [15]. The main feature of his construction was the use
of vertex operators with values in the algebra of formal differential operators in the space
variable x. From the point of view of the Hirota equations, such operators are needed to cancel
the multivaluedness of the logarithms appearing in the vertex operators. Recently a more
familiar version of the HQEs of ETH was suggested [17], which does not require the algebra
of differential operators in x. In the last section we consider the equivalence of such different
formulations.

The paper is organized as follows: in section 2 we recall some facts from [16], mainly
to fix the notations and state the Milanov–Tseng form of the Hirota equations. In particular
we give the definition of the Frobenius manifold Mk,m and independently compute the periods
which enter in the definition of the vertex operators. In section 3 we first rewrite the Hirota
equations in a more standard form, then we express them in terms of difference operators.
A straightforward analysis then allows us to derive the Sato and Lax equations of the EBTH.
In section 4 we show that the Hirota equations are actually equivalent to the Sato equations,
namely we show that given a solution of the Sato equations we can construct from it a tau
function which satisfies the Hirota equations. Finally, in section 5, we comment on alternative
formulations of the Hirota equations for EBTH.

2. The Hirota quadratic equations for the total descendent potential of Mk,m

In this section we will recall some material from [16], mainly to fix notations. We also give
a slightly different derivation of the classical limit of the periods appearing in the vertex
operators.

2.1. The Frobenius manifold Mk,m

Let Mk,m be the Frobenius manifold on the space of trigonometric Laurent polynomials of
degree (k, m), i.e.

λ(ζ ) = ζ k + u1ζ
k−1 + . . . + uk+mζ−m, (1)
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as defined in [8]. The identification of TλMk,m with C[ζ , ζ−1]/(∂ζ λ) induces on the tangent
bundle an associative commutative product. The flat metric is defined by the residue pairing

⟨∂ ′, ∂ ′′⟩ = Res
dλ=0
|λ|<∞

∂ ′λ(ζ )∂ ′′λ(ζ )

λ′(ζ )

dζ

ζ 2
. (2)

Recall that the flat coordinates are defined in terms of residues as

tα = − k
α

Resζ=∞λ(ζ )
α
k

dζ

ζ
, tk+m−β = m

β
Resζ=0λ(ζ )

β
m

dζ

ζ
, (3)

for α = 1, . . . , k − 1, β = 1, . . . , m and tk+m = log(Qmuk+m). The only non-zero entries of
the metric in flat coordinates are〈

∂

∂tα
,

∂

∂tk−α

〉
= 1

k
,

〈
∂

∂tk+β
,

∂

∂tk+m−β

〉
= 1

m
(4)

for α = 1, . . . , k − 1, β = 0, . . . , m. The unity and Euler vector fields in flat coordinates are
given by e = ∂

∂tk and

E =
k∑

α=1

α

k
tα

∂

∂tα
+

m−1∑

β=1

(
1 − β

m

)
tk+β ∂

∂tk+β
+

(
1
k

+ 1
m

)
m

∂

∂tm+k
. (5)

2.2. Periods

The vertex operators appearing in the HQEs are defined in terms of the ‘classical limit’ of
certain periods of the superpotential λ(ζ ).

Let & ⊂ Mk,m × C be the discriminant, the set of points (t0, λ0) at which the preimage
λ−1(λ0) is singular, i.e. is given by less than k + m distinct points. Let ζa(λ) denote one of
such points.

The periods I(l)
a (t, λ), l ∈ Z are multivalued functions on (Mk,m × C)\& with values in

H := T Mk,m, defined by
〈
I(−p)
a (λ, t),

∂

∂tα

〉
= − ∂

∂tα

[
d−1

(
(λ − λ(ζ ))p

p!
dζ

ζ

)]

ζ=ζa(λ)

, p ! 0. (6)

Here the formal integration is defined as d−1(ζ s dζ ) = (s + 1)−1ζ s+1 for s ̸= −1 and
d−1(ζ−1dζ ) = log ζ . The relation ∂λI(p)

a = I(p+1)
a , which can be easily verified for negative p,

serves as a definition for the p > 0 periods.
The classical limit mentioned above has to be performed as follows: first one considers the

asymptotic expansion of the above expression for λ ∼ ∞, and observes that the coefficients
in such expansion are polynomials in the flat coordinates3 t1, . . . , tk+m and in etk+m/m. Then
one sets to zero tα and etk+m/m, which amounts to taking the constant coefficient of such
polynomials. In contrast with what happens in the An+1 case [12], note that here ‘limit’ does
not correspond to an actual limit to a point of the Frobenius manifold, since tk+m and etk+m

evidently cannot be set to zero at the same time. This phenomenon can be traced back to the
resonant spectrum of the Frobenius manifold Mk,m.

The classical limit of the periods I(p)
a has been computed in [16] using the fact that they

satisfy certain differential equations. Let us sketch here how to directly obtain such a limit
from the definition (6).

First observe that in the λ ∼ ∞ the preimages of a point λ split in two subsets: we denote
ζa(λ) with a = 1, . . . , k those that tend to ∞ and with ζb(λ) with b = k + 1, . . . , k + m, those
that tend to 0.
3 In this section we set the Novikov parameter Q to 1, for the sake of simplicity. One can recover the dependence on
Q by shifting tk+m by m log Q.
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Their asymptotic behaviour for λ ∼ ∞ defines two Laurent series

ζa(λ) ∼ λ1/k
a + O(1) ∈ Rλ1/k

a

[[
λ−1/k

a

]]
(7)

ζb(λ)e−tk+m/m ∼ λ
−1/m
b + O

(
λ

−2/m
b

)
∈ R

[[
λ

−1/m
b

]]
(8)

with coefficients in R := C[t1, . . . , tk+m, etk+m/m]. Moreover, in the classical limit all but the
leading terms in the right-hand sides of the previous expressions become zero. The indices a,
b in λ1/k

a , λ
1/m
b enumerate the different branches of the roots.

For p > 0, moving the derivative ∂tα inside the integral and recalling λ − λ(ζa(λ)) = 0
by definition, we can write

〈
I(−p)
a (λ, t),

∂

∂tα

〉
=

[
d−1

(
(λ − λ(ζ ))p−1

p − 1!
∂λ(ζ )

∂tα
dζ

ζ

)]

ζ=ζa(λ)

. (9)

It is easy to prove that λ(ζ ), ∂tαλ(ζ ) ∈ R[ζ , ζ−1] and that in the classical limit λ(ζ ) → ζ k

and ∂λ(ζ )
∂tα gives ζ k−α for α = 1, . . . , k, and tends otherwise to zero. It follows that (9) tends to

[
d−1

(
(λ − ζ k)p−1

p − 1!
ζ k−α dζ

ζ

)]

ζ=λ
1/k
a

(10)

for α = 1, . . . , k, and to zero for α = k + 1, . . . , k + m.
The second set of periods corresponds to the preimages ζb(λ) that tend to 0 for λ ∼ ∞.

As one can see from the asymptotic expansions (8) the leading term in ζb(λ) vanishes in the
classical limit. For this reason it is convenient to change variable to ζ̃ = e−tk+m/mζ in the
integration, writing

〈
I(−p)
b , ∂

∂tα
〉

as
[

d−1

(
λ − λ(ζ̃ ))p−1

p − 1!
∂λ(ζ )

∂tα

∣∣∣∣
ζ=etk+m/m ζ̃

dζ̃

ζ̃

)]

ζ̃=e−tk+m/mζb(λ)

. (11)

Note that in the new variable the formal integration rules are d−1(ζ̃ sdζ̃ ) = (s + 1)−1ζ̃ s+1

for s ̸= −1 and d−1(ζ̃−1dζ̃ ) = log ζ̃ + tk+m/m. The classical limit of λ(ζ̃ ) is now given by
ζ̃−m. The derivatives ∂λ(ζ )

∂tα evaluated at ζ = etk+m/mζ̃ tend to ζ̃ k−α for α = k, . . . , k + m and
otherwise to 0. Hence the classical limit of equation (11) is

[

d−1

(
(λ − ζ̃−m)p−1

p − 1!
ζ̃ k−α dζ̃

ζ̃

)]

ζ̃=λ
−1/m
b

. (12)

Finally the integrals (10) and (12) can be easily computed in explicit form. Their generating
functions

f a/b
∞ =

∑

n∈Z
I(n)
a/b(λ,∞)(−z)n (13)

are given in the next section.

2.3. Vertex operators

The vertex operator ' associated to a vector f ∈ H[[z, z−1]] is defined as ' := e f̂−e f̂+ , where
f̂± are linear differential operators obtained by a quantization procedure, as described e.g. in
[11]. Briefly, given

f (z) =
∑

n∈Z
(I(n))α

∂

∂tα
(−z)n (14)

4
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the associated quantized operators are

f̂+ =
∑

n!0

(I(n))α(−1)nϵ
∂

∂qα
n
, f̂− = −

∑

n!0

(I(−n−1))α
qα

n

ϵ
. (15)

Here ∂
∂tα ∈ H denotes the coordinate basis of H and dtα the dual basis of T ∗Mk,m identified

with H by the metric.
These operators act on the Fock space BH , i.e. the space of formal functions in the variables

qα
n for n ! 0, α = 1, . . . , m + k.

By the explicit computation of the periods in the previous section we obtain two sets of
vectors f a/b

∞ . For 1 " a " k, we have

f a
∞ = 1

k

∑

n!0

λn

n!
(loga λ − cn) dtk(−z)−n−1 + 1

k

∑

n!0

n!λ−n−1dtkzn

+
k−1∑

α=1

∑

n∈Z

(
α

k
− 1

)

n
λα/k−n−1

a
∂

∂tα
(−z)n. (16)

In this formula loga λ denotes the different branches of the logarithm, parametrized by a, i.e.
loga λ = log λ + 2π i(a − 1) where log λ is a fixed choice of branch of the logarithm near
λ = ∞. Consequently

λ
1
k
a = e

1
k loga λ = λ

1
k e2π i a−1

k . (17)

We denote the harmonic numbers c0 = 0, cn = 1 + · · · + 1
n and for n ∈ Z we define the

function

(q)n :=
∏n

l=−∞(q − l + 1)
∏0

l=−∞(q − l + 1)
= '(q + 1)

'(q − n + 1)
, (18)

which coincides with the Pochhammer symbol for the falling factorial for n ! 0.
For k + 1 " b " k + m, evaluating (12) we get

f b
∞ = − 1

m

∑

n!0

λn

n!
(logb(λQ−m) − cn) dtk(−z)−n−1 − 1

m

∑

n!0

n!λ−n−1dtkzn

−
m∑

α=1

∑

n∈Z

(
α

m
− 1

)

n
λ

α/m−n−1
b

∂

∂tk+m−α
(−z)n, (19)

where the branch of the logarithm is parametrized by logb λ = log λ + 2π i(b − k − 1).
We denote '±a

∞ and '±b
∞ the vertex operators corresponding to ± f a

∞ and ± f b
∞, respectively.

Note that, in contrast to what happens e.g. in the An case [12], the vertex operators
introduced above depend not only on the roots of λ but also on its logarithm. As a consequence
the averaging over the different branches of the roots that appears in the Hirota equation (24)
fails to produce a single-valued function in a neighbourhood of λ ∼ ∞. Indeed the sum

k∑

a=1

λ
1−k

k
a 'a

∞ ⊗ '−a
∞ (20)

gets an extra summand proportional to

eφ̂− ⊗ e−φ̂− − 1 (21)

upon sending λ to λ e2π i, where φ− := 2π i
∑

n!0
λn

n! dtk(−z)−n−1.
The problem of the logarithmic multivaluedness has been solved by Milanov [15] by

introducing extra vertex operators that take values in the algebra of differential operators
acting on an extra variable x.

5
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Let

'δ
∞ = e f̂ ϕ

∞ϵ∂x e
x̂
ϵ

∂

∂tk , 'δ#
∞ = e

x̂
ϵ

∂

∂tk e− f̂ ϕ
∞ϵ∂x , (22)

where

f ϕ
∞ =

∑

n>0

λn

n!
dtk(−z)−n−1 ∈ H[[z−1]]. (23)

One can check that 'δ#
∞ ⊗ 'δ

∞ vanishes when composed with the extra term (21), if
(qk

0)
′ − (qk

0)
′′ ∈ Z. A similar argument holds for the second summand in the HQE (24). This

ensures that the 1-form in λ appearing in the HQEs is single valued in a neighbourhood at
λ ∼ ∞.

2.4. Hirota quadratic equations

We say that an element τ of the Fock space BH satisfies the (descendent) HQE iff the 1-form

(
'δ#

∞ ⊗ 'δ
∞

)
(

1
k

k∑

a=1

λ
1−k

k
a 'a

∞ ⊗ '−a
∞ − Q

m

k+m∑

b=k+1

λ
− 1+m

m
b 'b

∞ ⊗ '−b
∞

)

(τ ⊗ τ ) dλ (24)

computed at (qk
0)

′′ − (qk
0)

′ = ϵr is regular in λ for each r ∈ Z. The tensor product τ ⊗τ denotes
the multiplication of two tau functions τ (q′)τ (q′′), evaluated in variables q′, q′′. By definition,
the HQE is interpreted as follows: first we perform a change of variables y′ = 1

2 (q′ − q′′) and
y′′ = 1

2 (q′+q′′), then we expand the result in power series in y′′. By the argument in the previous
section each coefficient in this expansion is a single-valued function in a neighbourhood of
λ ∼ ∞ hence expands as a Laurent series in λ−1. The requirement of regularity means that all
strictly negative powers of λ are set to zero.

Remark 1. To the (calibrated) Frobenius manifold Mk,m one associates, using the Givental
formula [11], an element DMk,m of the Fock space BH , called the total descendent potential, in
terms of the action of certain quantized operators on k + m copies of the Kontsevich–Witten
KdV tau function. According to [16], DMk,m should be easily shown to coincide with the
generating function of the Gromov–Witten invariants of Ck,m.

Milanov and Tseng proved in [16] that the total descendent potential DMk,m satisfies the
HQE (24). They conjectured that the HQE (24) should be equivalent to the EBTH, as we prove
in the following.

Note that this result follows from a similar theorem that asserts that the total ancestor
potential, depending on a point t of the Frobenius manifold, satisfies a t-dependent ancestor
Hirota equation. The descendent potential is related to the ancestor potential by a lower-
triangular S action of the Givental group, hence the descendent Hirota equation is obtained by
conjugation of the vertex operators by S, which is equivalent to performing a ‘classical limit’
in t. This explains the need for the ‘classical limit’ as shown above in section 2.2.

The ancestor Hirota equations are proved by showing the regularity of the bilinear
equations at the critical values λ ∼ ui of λ(ζ ), which, together with the property of invariance
under the monodromy group of Mk,m, implies regularity at λ ∼ ∞.

3. From Hirota to Lax formulation of the extended bigraded Toda hierarchy

Let us first spell out the HQE (24).

6
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3.1. Bilinear identity for the wave functions

Let us define the following power series in ζ−1

P1(ζ ) = 1
τ

exp

⎛

⎝m
k

ϵ
∑

n!0

n!ζ−nk−k ∂

∂qk+m
n

+ ϵ
∑

n!0

k−1∑

α!1

(
n − α

k

)

n
ζ α−nk−k ∂

∂qα
n

⎞

⎠ τ (25)

such that

P1
(
λ1/k

a

)
= e(̂ f a

∞ )+τ

τ
(26)

for 1 " a " k.
Using the quantization procedure to express the vertex operators in terms of differential

operators on the variables q, and substituting the previous definition, we get

'δ#
∞'a

∞τ = exp
(

x
∂

∂qk
0

)
· exp

(
∑

n>0

λn

n!
qk

n∂x

)

· exp

⎛

⎝− 1
ϵk

∑

n!0

(
k−1∑

α=1

(
α

k
− 1

)

−n−1
λα/k+n

a qk−α
n + λn

n!
(log λa − cn)qk

n

)⎞

⎠

·τP1
(
λ1/k

a

)
. (27)

Now we perform a careful commutation of the terms in this expression that will allow us to
remove the logarithmic term. First, since in the second and third line there is no dependence
on the variable x, we can move the second exponential to the end of the third line. Then we
act with exp(x ∂

∂qk
0
) on the quantities appearing on its right. That amounts to inserting the x

dependence in τ (and in P1, since it also depends on τ ) and to the multiplication by a factor
λ

− x
ϵk

a .
Denote by a prime the x dependent quantities obtained by shifting qk

0 by x, e.g.

τ ′ = τ |qk
0→qk

0+x, P ′
1 = P1|qk

0→qk
0+x, etc . . . (28)

The previous expression is now equal to

τ ′P ′
1

(
λ1/k

a

)
· exp

⎛

⎝− 1
ϵk

∑

n!0

k−1∑

α=1

(
α

k
− 1

)

−n−1
λα/k+n

a qk−α
n

⎞

⎠ (29)

· exp

(

− 1
ϵk

∑

n>0

λn

n!
(log λa − cn)qk

n

)

(30)

· λ
− qk

0+x

ϵk
a · exp

(
∑

n>0

λn

n!
qk

n∂x

)

. (31)

Commuting the two terms in the last line exactly cancels the logarithm that appears in the
second line. We have shown that

'δ#
∞'a

∞τ = τ ′P ′
1

(
λ1/k

a

)
· exp

⎛

⎝− 1
ϵk

∑

n!0

k−1∑

α=1

(
α

k
− 1

)

−n−1
λα/k+n

a qk−α
n

⎞

⎠

· exp

(
1
ϵ

∑

n>0

λn

n!

(
ϵ∂x + 1

k
cn

)
qk

n

)

· λ
− qk

0+x

ϵk
a . (32)

7
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Defining the ∂x-operator-valued wave function as

W1(ζ ) = P ′
1(ζ ) e− 1

ϵk

∑
n!0

∑k−1
α=1(

α
k −1)−n−1ζ

α+nkqk−α
n + 1

ϵ

∑
n>0

ζnk

n! (ϵ∂x+ 1
k cn)qk

n (33)

we have

'δ#
∞'a

∞τ = τ ′W1
(
λ1/k

a

)
λ

− qk
0+x

ϵk
a . (34)

Note that the introduction (originally done in [15]) of a differential operator-valued
wave function allows one to isolate the logarithmic dependence, which appears in the vertex
operators, only on the last factor in (34). Such a factor will actually cancel in the HQE.

In a similar way we can prove that

'δ
∞'−a

∞ τ = λ
qk

0+x

ϵk
a W∗

1

(
λ1/k

a

)
τ ′, (35)

'δ#
∞'b

∞τ = τ ′W2
(
λ

1/m
b

)
(λbQ−m)

qk
0+x

ϵm , (36)

'δ
∞'−b

∞ τ = (λbQ−m)−
qk

0+x

ϵm W∗
2

(
λ

1/m
b

)
τ ′. (37)

where

W∗
1 (ζ ) = e

1
ϵk

∑
n!0

∑k−1
α=1(

α
k −1)−n−1ζ

α+nkqk−α
n − 1

ϵ

∑
n>0

ζnk

n! (ϵ∂x+ 1
k cn)qk

nP∗
1

′(ζ ),

W2(ζ ) = P ′
2(ζ ) e

1
ϵm

∑
n!0

∑m
α=1(

α
m −1)−n−1ζ

α+nmqk+α
n + 1

ϵ

∑
n>0

ζnm

n! (ϵ∂x− 1
m cn)qk

n ,

W∗
2 (ζ ) = e− 1

ϵm

∑
n!0

∑m
α=1(

α
m −1)−n−1ζ

α+nmqk+α
n − 1

ϵ

∑
n>0

ζnm

n! (ϵ∂x− 1
m cn)qk

nP∗
2

′(ζ ). (38)

The remaining symbols of the dressing operators are defined as

P∗
1 (ζ ) = 1

τ
exp

⎛

⎝−m
k

ϵ
∑

n!0

n!ζ−nk−k ∂

∂qk+m
n

− ϵ
∑

n!0

k−1∑

α!1

(
n − α

k

)

n
ζ α−nk−k ∂

∂qα
n

⎞

⎠ τ, (39a)

P2(ζ ) = 1
τ

exp

⎛

⎝−ϵ
∑

n!0

n!ζ−nm−m ∂

∂qk+m
n

− ϵ
∑

n!0

m∑

α!1

(
n − α

m

)

n
ζ α−nm−m ∂

∂qk+m−α
n

⎞

⎠ τ,

(39b)

P∗
2 (ζ ) = 1

τ
exp

⎛

⎝ϵ
∑

n!0

n!ζ−nm−m ∂

∂qk+m
n

+ ϵ
∑

n!0

m∑

α!1

(
n − α

m

)

n
ζ α−nm−m ∂

∂qk+m−α
n

⎞

⎠ τ (39c)

in such a way that the following expressions, analogous to (26), hold

P∗
1

(
λ1/k

a

)
= e−(̂ f a

∞ )+τ

τ
, (40)

P2
(
λ

1/m
b

)
= e(̂ f b

∞ )+τ

τ
, (41)

P∗
2

(
λ

1/m
b

)
= e−(̂ f b

∞ )+τ

τ
. (42)

8
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Substituting this in the HQE (24) and multiplying on the left by τ ′(q′)−1, and on the right
by τ ′(q′′)−1, we obtain the following equivalent HQE

1
k

k∑

a=1

λ(1−k)/k
a W1

(
λ1/k

a

)
λ

− (qk
0 )′+x

ϵk
a · λ

(qk
0 )′′+x

ϵk
a W∗

1

(
λ1/k

a

)
dλ

−Q
m

k+m∑

b=k+1

λ
− 1+m

m
b W2

(
λ

1
m
b

)
(λbQ−m)

(qk
0 )′+x

ϵm (λbQ−m)−
(qk

0 )′′+x

ϵm W∗
2

(
λ

1
m
b

)
dλ.

In this formula W1, W2 are evaluated in the variables q′, while W∗
1 , W∗

2 are evaluated in the
variables q′′.

Recalling moreover that (qk
0)

′′ − (qk
0)

′ = ϵr for r ∈ Z, the previous expression becomes

1
k

k∑

a=1

W1
(
λ1/k

a

)
W∗

1

(
λ1/k

a

)
λ(r−k+1)/k

a dλ − Qr+1

m

k+m∑

b=k+1

W2
(
λ

1
m
b

)
W∗

2

(
λ

1
m
b

)
λ

(−m−r−1)/m
b dλ. (43)

The two lines in this expression are formal series in λ
1
k
a and λ

1
m
b , respectively. The averages

over the kth and mth roots of unity, respectively, ensure that the non integer roots cancel, i.e.
it is a formal series in integer powers of λ.

By a change of variable, we can easily show that the regularity of the 1-form (43) is
equivalent to the following residue formula

ResζW1(ζ )W∗
1 (ζ )ζ ks+rdζ = Qr+1ResζW2(ζ )W∗

2 (ζ )ζ ms−r−2dζ (44)

for each s ! 0. As above, W1, W2 are evaluated in the variables q′, while W∗
1 , W∗

2 are
evaluated in the variables q′′, and (qk

0)
′′ − (qk

0)
′ = ϵr for r ∈ Z.

3.2. Difference operators

This bilinear expression can be reformulated in terms of difference operators obtained by
‘quantizing’ the symbols Wi. Let A =

∑
s as.

s be a difference operator, where the coefficients
as are functions of x and the shift operator .s acts as .sa(x) = a(x + ϵs).s. The left and
right symbols of A are formal functions of ζ defined as

σl(A) =
∑

s

asζ
s, σr(A) =

∑

s

ãsζ
s (45)

where the coefficients ãs(x) = as(x − ϵs) are such that A =
∑

s .sãs. Note that we will deal
with symbols whose coefficients are differential operators in x.

To reconstruct from (44) a bilinear expression in terms of difference operators we need
to decide which expressions are associated to left and right symbols. In particular we have to
take care of the fact that the variable x in Wi is shifted by ϵr and the same constant r appears
in the exponent of ζ in the residues with opposite sign.

Let us define the difference wave-operators Wi and W ∗
i such that

σl(W1) = W1(ζ
−1), σr(W ∗

1 ) = W∗
1 (ζ−1), (46a)

σl(W2) = W2(Qζ ), σr(W ∗
2 ) = W∗

2 (Qζ ). (46b)

Let us consider the left-hand side of (44). Changing the integration variable to ζ−1 and
substituting the definitions of the wave-operators we get

Resζ σl(W1.
−ks−1)σr(W ∗

1 .−r)
dζ

ζ
. (47)

9
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Note that we have used the obvious identities σl(A.r) = σl(A)ζ r and σr(A.r) =
σr(A(x − ϵr))ζ r valid for any difference operator A.

Defining Res.A = a0 for A =
∑

s as.
s, one can easily check that

Resζ σl(A)σr(B)
dζ

ζ
= Res.AB (48)

for any two difference operators A and B.
The left-hand side in (44) is then equal to

Res.W1.
−ks−1W ∗

1 .−r (49)

and a similar computation gives that the right-hand side (after rescaling ζ → Qζ ) is equal to

Res.QmsW2.
ms−1W ∗

2 .−r. (50)

Since these expressions have to be equal for any value of r ∈ Z, we obtain that the bilinear
equation (44) is equivalent to the following identity of difference operators for s ! 0

W1(q′, x).−ks−1W ∗
1 (q′′, x) = QW2(q′, x)(Q.)ms−1W ∗

2 (q′′, x). (51)

Note that in this expression we set (qk
0)

′ = (qk
0)

′′ and that the coefficients expand as differential
operators in x.

3.3. Sato–Wilson and Lax equations

Now we examine some consequences of the last equation. First observe that by definition the
operators Wi and W ∗

i are of the following form

W1 = P1 e− 1
ϵk

∑
n!0

∑k−1
α=1(

α
k −1)−n−1.

−α−nkqk−α
n + 1

ϵ

∑
n>0

.−nk
n! (ϵ∂x+ 1

k cn)qk
n (52a)

W2 = P2 e
1

ϵm

∑
n!0

∑m
α=1(

α
m −1)−n−1(Q.)α+nmqk+α

n + 1
ϵ

∑
n>0

(Q.)nm

n! (ϵ∂x− 1
m cn)qk

n (52b)

W ∗
1 = e

1
ϵk

∑
n!0

∑k−1
α=1(

α
k −1)−n−1.

−α−nkqk−α
n − 1

ϵ

∑
n>0

.−nk
n! (ϵ∂x+ 1

k cn)qk
n P∗

1 (52c)

W ∗
2 = e− 1

ϵm

∑
n!0

∑m
α=1(

α
m −1)−n−1(Q.)α+nmqk+α

n − 1
ϵ

∑
n>0

(Q.)nm

n! (ϵ∂x− 1
m cn)qk

n P∗
2 (52d)

where Pi and P∗
i are difference operators given by

σl(P1) = P ′
1(ζ

−1), σr(P∗
1 ) = P∗

1
′(ζ−1) (53)

σl(P2) = P ′
2(Qζ ), σr(P∗

2 ) = P∗
2

′(Qζ ). (54)

In particular the operators Pi are of the form

P1 = 1 + p1. + . . . (55a)

P2 = p0 + p−1.
−1 + . . . , (55b)

where the coefficients pi are expressed in terms of the tau function by the definition (25) and
(39b). Similar formulas hold for P∗

i . Note that the exponentials in W ∗
1 , W ∗

2 are the inverses of
the exponentials appearing in W1, W2, respectively.

Evaluating the bilinear identity for the wave-operators (51) at different values of s and
setting q′′ = q′ we can obtain the Sato–Wilson equation and the Lax formulation of the
hierarchy.

Let s = 0 and q′ = q′′. From (51) we get

P1.
−1P∗

1 = P2.
−1P∗

2 . (56)

It easily follows that P∗
1 (x−ϵ) and P∗

2 (x−ϵ) are the inverse operators to P1 and P2, respectively.

10
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Using this fact and letting s = 1 and q′ = q′′ we obtain

P1.
−kP−1

1 = P2(Q.)mP−1
2 =: L. (57)

Clearly the operator L is of the form

L = .−k + · · · + um.m. (58)

Finally, differentiate (51) to qk−α
n for 1 " α < k, respectively, to qk+α

n for 1 " α " m and
to qk

n, this gives, using the above considerations
∂P1

∂qk−α
n

P−1
1 − 1

ϵk

(α

k
− 1

)

−n−1
P1.

−α−nkP−1
1 = ∂P2

∂qk−α
n

P−1
2 , (59)

∂P1

∂qk+α
n

P−1
1 = ∂P2

∂qk+α
n

P−1
2 + 1

ϵm

( α

m
− 1

)

−n−1
P2(Q.)α+nmP−1

2 , (60)

∂P1

∂qk
n

P−1
1 + 1

ϵn!
P1

(
ϵ∂x + 1

k
cn

)
.−nkP−1

1 = ∂P2

∂qk
n

P−1
2 + 1

ϵn!
P2

(
ϵ∂x − 1

m
cn

)
(Q.)nmP−1

2 .

(61)

Projecting on the positive (>0), respectively non-positive ("0), degrees of ., one obtains the
following Sato–Wilson equations

∂P1

∂qβ
n

P−1
1 =

(
Bβ

n

)
>0 ,

∂P2

∂qβ
n

P−1
2 = −

(
Bβ

n

)
"0 , (62)

where Bβ
n is defined by

Bβ
n = 1

ϵk

(
−β

k

)

−n−1
Ln− β

k +1 1 " β " k − 1, (63)

Bβ
n = 1

ϵm

(
β − k

m
− 1

)

−n−1
L

β−k
m +n k + 1 " β " k + m, (64)

Bk
n = 2

ϵn!

(
Ln

(
log L − cn

2

(
1
k

+ 1
m

)
− 1

2
log Q

))
. (65)

We have defined the following operators as in [4]: the roots of the Lax operator L

L
1
k = P1.

−1P−1
1 , L

1
m = P2(Q.)P−1

2

and its logarithm

log L = 1
2m

log+ L + 1
2k

log− L,

where

log− L = −kP1ϵ∂xP−1
1 , (66)

log+ L = mP2ϵ∂xP−1
2 + m log Q. (67)

We see that starting from the HQE, we are naturally led to the definition of logarithms of
L. They are difference operators which contain the operator of derivation in x. See [4, 6] for
further discussion of their properties.

The Lax equations are easily derived from the Sato–Wilson equations:
∂L

∂qβ
n

= −
[(

Bβ
n

)
"0, L

]
=

[(
Bβ

n

)
>0, L

]
. (68)

These Lax equations, together with the form of L given in (58) and the definitions of its roots
and logarithms, defines a hierarchy called the (extended) bigraded Toda hierarchy, which has
been introduced in [4]. We have shown that

11
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Proposition 2. The Lax operator L associated to a tau function which satisfies the HQE (24)
is a solution of the (k, m)-EBTH Lax equations (68).

As a corollary, it follows from the Milanov–Tseng theorem [16] that the total descendent
potential of Ck,m is a tau function of this hierarchy.

Remark 3. The bigraded Toda hierarchy has been defined in [4] in a slightly different way.
The two formulations are identified by changing ϵ → −ϵ, and correspondingly . → .−1,
and by rescaling the times qβ

n → sβqβ
n , with constants sβ not dependent on n.

4. From Lax to Hirota

We have shown how to derive the Lax formulation of the bigraded Toda hierarchy from the
HQEs. The Hirota equations are actually equivalent to the Lax formulation, or rather to the
Sato–Wilson equations, of the EBTH. In this section we will briefly recall the construction of
the tau function starting from a solution of the EBTH, and sketch the proof that the HQEs are
satisfied.

We say that two operators P1 and P2 of the form (55) are dressing operators for the
EBTH hierarchy if they satisfy the Sato–Wilson equations (62) and the constraint (57). The
corresponding wave functions Wi, W∗

i are defined as the symbols (46) of the wave-operators
(52).

Proposition 4. The operators P1, P2 are dressing operators for the EBTH hierarchy if and only
if the corresponding wave functions satisfy the bilinear equation (44).

Proof. The proof is quite standard (see for example [13, 15, 18]). We have already shown that
the bilinear equations for the wave functions imply the Sato–Wilson equations. Let us sketch
the proof of the converse.

Let P1 and P2 be dressing operators for EBTH. Define the wave-operators W1, W2, W ∗
1 and

W ∗
2 by formula (52) and recall that P∗

i . = .P−1
i , i = 1, 2.

The first important observation is that the wave-operators satisfy the same equations in
qβ

n , but for the case β = k, n = 0. It follows that

∂W1

∂qβ
n

W −1
1 = ∂W2

∂qβ
n

W −1
2 , (69)

for (β, n) ̸= (k, 0). It is also quite obvious that

W1.
−1W ∗

1 = QW2(Q.)−1W ∗
2 . (70)

It is then a simple matter of induction to prove that
(

∂

∂qα1
n1

. . .
∂

∂qαℓ
nℓ

W1

)
.−1W ∗

1 = Q
(

∂

∂qα1
n1

. . .
∂

∂qαℓ
nℓ

W2

)
(Q.)−1W ∗

2 (71)

for any multi-index (α1, n1; . . . ;αℓ, nℓ), for all pairs of indexes, excluding (αi, ni) = (k, 0).
From this the bilinear equation for the wave-operators (51) with s = 0 simply follows, using
a Taylor series expansion. Multiplying on the left by Ls, we obtain (51) for any s ! 0.

Inverting the argument used in section 3.2, it is clear that (51) is equivalent to (44). #

From this proof it is clear that the Sato–Wilson equations are also equivalent to the bilinear
equation for the wave-operators (51).

12
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We now want to show the existence of a tau function, namely that, given dressing operators
P1 and P2 of the EBTH, one can find a function τ , depending on the times qα

n and the dispersive
parameter ϵ such that (25, 39b) hold. These equations can be written as

Pi(ζ ) = τ (q − [ζ−1]i)

τ (q)
, i = 1, 2 (72)

where the shift functions [ζ−1]1 and [ζ−1]2 can be read off from (25) and (39b).
The main observation is that these shifts do not involve the ‘logarithmic’ variables qk

n for
n > 0. (Note that in (39b) the coefficient (n − 1)n in the term containing ∂

∂qk
n

is equal to δn,0.)
Therefore, the times qk

n for n > 0 enter only as parameters in equations (72).
To prove (72) we need to show that some compatibility conditions hold. Such compatibility

equations will not involve the times qk
n explicitly. Since the only times that do not come from a

reduction of the 2D Toda times are precisely the logarithmic ones, the proof of the compatibility
equations can be performed exactly as in the 2D Toda case [18].

Another consequence of the fact that we do not shift the ‘logarithmic’ times qk
n (n > 0)

in (72), is that the tau function has a much bigger arbitrarity than in the usual (non-extended)
case.

Proposition 5. Let P1 and P2 be dressing operators for the EBTH, then there exists a function
τ such that (72) holds. The function τ is uniquely determined up to right multiplication by a
non-vanishing function depending only on qk

n, n > 0.

Proof. The compatibility conditions for the formulas (72) are

Pi(q − [ξ−1] j; ζ )P j(q; ξ ) = P j(q − [ζ−1]i; ξ )Pi(q; ζ ) (73)

for i, j = 1, 2.
One can obtain these equations from (51) in a similar way as is done in [18]. We refer to

that paper for the details of the proof, here we will only give a sketch. We first rewrite (51) by
introducing some arbitrary parameters t j:

W1(q′) e
∑∞

j=1 t j.
−k j

.−1W ∗
1 (q′′) = W2(q′) e

∑∞
j=1 t j (Q.)m j

.−1W ∗
2 (q′′). (74)

Substitute q′′ = q′ − [ζ−1]1 − [ξ−1]1 and t j = ζ− jk+ξ− jk

jk in (74), this gives equation (75) of

Lemma 6. Let (1 − z.)−1 =
∑∞

n=0 .nzn, the following identities hold:

P1(q)(1 − (ζ.)−1)−1(1 − (ξ.)−1)−1.−1P∗
1 (q − [ζ−1]1 − [ξ−1]1)

= P2(q).−1P∗
2 (q − [ζ−1]1 − [ξ−1]1), (75)

P1(q)(1 − (ζ.)−1)−1.−1P∗
1 (q − [ζ−1]1 − [ξ−1]2)

= P2(q)

(
1 − .Q

ξ

)−1

.−1P∗
2 (q − [ζ−1]1 − [ξ−1]2), (76)

P1(q).−1P∗
1 (q − [ζ−1]2 − [ξ−1]2)

= P2(q)

(
1 − .Q

ζ

)−1 (
1 − .Q

ξ

)−1

.−1P∗
2 (q − [ζ−1]2 − [ξ−1]2). (77)

The other two formulas can be obtained in a similar way. Next, using

(1 − (ζ.)−1)−1(1 − (ξ.)−1)−1.−1 = ζ ξ

ξ − ζ
((1 − (ζ.)−1)−1 − (1 − (ξ.)−1)−1)

and taking the residue in (75) one obtains the first equation in

13
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Lemma 7. The following identities hold:

P1(x, q, ζ )P∗
1 (x, q − [ζ−1]1 − [ξ−1]1, ζ ) = P1(x, q, ξ )P∗

1 (x, q − [ζ−1]1 − [ξ−1]1, ξ ), (78)

P1(x, q, ζ )P∗
1 (x − ϵ, q − [ζ−1]1 − [ξ−1]2, ζ )

= P2(x, q, ξ )P∗
2 (x − ϵ, q − [ζ−1]1 − [ξ−1]2, ξ ), (79)

P2(x, q, ζ )P∗
2 (x − 2ϵ, q − [ζ−1]2 − [ξ−1]2, ζ )

= P2(x, q, ξ )P∗
2 (x − 2ϵ, q − [ζ−1]2 − [ξ−1]2, ξ ). (80)

Setting ζ = ∞ in (78) and (79) gives

P1(x, q, ξ )P∗
1 (x, q − [ξ−1]1, ξ ) = 1 = P2(x, q, ξ )P∗

2 (x − ϵ, q − [ξ−1]2, ξ ). (81)

Using this formula to eliminate P∗
1 and P∗

2 in the last lemma, we obtain the compatibility
conditions (73).

Using (81), one deduces from (72) the following #

Corollary 8.

P∗
1 (ζ ) = τ (q + [ζ−1]1)

τ (q)
, P∗

2
′(x, q, ζ ) = τ (x + ϵ, q + [ζ−1]2)

τ (x, q)
. (82)

Remark 9. The construction in this section, which follows the method of [15], was also done
by Li et al in [13], but, as they point out, it doesn’t allow them to reproduce the form of
the Milanov–Tseng Hirota equations. This is mainly due to the fact that their choice of wave
functions, and consequently of vertex operator, was not consistent with that of [16].

5. On an alternative formulation of the EBTH Hirota equations

In this section we comment on a different formulation of the HQEs for the EBTH, which does
not involve vertex operators with coefficients in the algebra of differential operators in x, and
was first proposed by Takasaki in [17].

As recently observed by B Bakalov [1], the operator

N = e
−

∑
n>0

λn
n! qk

n∂qk
0 ⊗ e

−
∑

n>0
λn
n! qk

n∂qk
0 (83)

enjoys the same property as 'δ#
∞ ⊗ 'δ

∞ of killing the monodromy term (21). This points to the
following alternative form of the HQE:

N

(
1
k

k∑

a=1

λ
1−k

k
a 'a

∞ ⊗ '−a
∞ − Q

m

k+m∑

b=k+1

λ
− 1+m

m
b 'b

∞ ⊗ '−b
∞

)

(τ ⊗ τ ) dλ. (84)

As before we say that this HQE is satisfied if the expansion at λ ∼ ∞ does not contain negative
powers in λ, i.e. if the 1-form (84) is regular, for (q′′ − q′)k

0 = ϵr ∈ ϵZ. Note that (84) does
not depend so far on x, but such dependence can be easily added by shifting both (qk

0)
′ and

(qk
0)

′′ by x.
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Let us first obtain an explicit form for this HQE. Spelling out the regularity condition
above in terms of residues, similarly to what was done in section 3, we can easily see that the
HQE (84) is satisfied iff the following residue formula holds:

Resζ k(l−1)+r exp
1
ϵk

∑

n!0

(
k−1∑

α=1

(α

k
− 1

)

−n−1
ζ α+kn(q′′ − q′)k−α

n + 1
n!

ζ nkcn(q′ − q′′)k
n

)

·τ
(

q′ − [ζ−1]1,
(
qk

0

)′ −
∑

n>0

ζ kn

n!

(
qk

n

)′
)

· τ

(

q′′ + [ζ−1]1,
(
qk

0

)′′ −
∑

n>0

ζ kn

n!

(
qk

n

)′′
)

dζ (85)

= Resζ m(l−1)−2−rQr+1 exp
1

ϵm

∑

n!0

(
m∑

α=1

( α

m
− 1

)

−n−1
ζ α+nm(q′ − q′′)α+k

n

+ζ nm

n!
cn(q′′ − q′)k

n

)
(86)

· τ

(

q′ − [ζ−1]2,
(
qk

0

)′ −
∑

n>0

ζ mn

n!

(
qk

n

)′
)

· τ
(

q′′ + [ζ−1]2,
(
qk

0

)′′ −
∑

n>0

ζ mn

n!

(
qk

n

)′′
)

dζ (87)

where (q′′ − q′)k
0 = ϵr with r ∈ Z and l ! 1.

One can easily be convinced that in this form this equation is in principle equivalent to
the Hirota equation proposed, for the case k = m = 1, in [17].

It remains to show that (84) is indeed equivalent to (24). Let us denote the 1-form (84) by
N(ω). The HQE (84) is equivalent to the regularity of N(ω) while the HQE (24) is equivalent
to the regularity of ('δ#

∞ ⊗ 'δ
∞)(ω), in both cases evaluated at (q′′ − q′)k

0 = ϵr ∈ ϵZ. One can
easily check that the following identity holds

'δ#
∞ ⊗ 'δ

∞ = (e
∑

n>0
λn
n! qk

n∂x e
x∂qk

0 ⊗ e
x∂qk

0 e−
∑

n>0
λn
n! qk

n∂x )N. (88)

It follows that the HQE (24) is equivalent to the regularity of

e
∑

n>0
λn
n! (qk

n)′∂x N(ω)|x e−
∑

n>0
λn
n! (qk

n)′′∂x . (89)

The subscript x denotes that we have inserted the dependence on x by shifting shifting both
(qk

0)
′ and (qk

0)
′′ by x. Since both left and right multiplication by any operator depending only

on positive powers of λ preserves the regularity of a 1-form, we can conclude that (24) and
(84) are indeed equivalent.

Acknowledgments

The authors would like to thank B Bakalov for his insight on the alternative formulation of the
HQE appearing in section 5. GC would like to acknowledge the Department of Mathematics of
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