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a b s t r a c t

We study structural aspects of the Ablowitz–Ladik (AL) hierarchy in the light of its realization as a two-
component reduction of the two-dimensional Toda hierarchy, and establish new results on its connection
to the Gromov–Witten theory of local CP1. We first of all elaborate on the relation to the Toeplitz lattice
and obtain a neat description of the Lax formulation of the AL system. We then study the dispersionless
limit and rephrase it in terms of a conformal semisimple Frobenius manifold with non-constant unit,
whose properties we thoroughly analyze. We build on this connection along two main strands. First
of all, we exhibit a manifestly local bi-Hamiltonian structure of the Ablowitz–Ladik system in the
zero-dispersion limit. Second, we make precise the relation between this canonical Frobenius structure
and the one that underlies the Gromov–Witten theory of the resolved conifold in the equivariantly
Calabi–Yau case; a key role is played by Dubrovin’s notion of ‘‘almost duality’’ of Frobenius manifolds.
As a consequence, we obtain a derivation of genus zero mirror symmetry for local CP1 in terms of a dual
logarithmic Landau–Ginzburg model.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Integrable hierarchies find a special place of appearance in
moduli space problems motivated by topological field theory.
A prominent case study is provided by the classical integrable
hierarchies that conjecturally govern the Gromov–Witten theory
of symplectic manifolds. Denote with Mg,n(X, β) the stable
compactification [1] of the moduli space of degree β ∈ H2(X,Z) J-
holomorphic maps from n-pointed, arithmetic genus g curves to a
Kähler manifold (X, J, ω). The Gromov–Witten invariants of X are
defined as
τp1(φα1) · · · τpn(φαn)

X
g,n,β :=


[Mg,n(X,β)]vir

n
i=1

ev∗

i (φαi)ψ
pi
i (1)

where [Mg,n(X, β)]vir is the virtual fundamental class of Mg,n
(X, β), φαi ∈ H•(X,C) are arbitrary co-homology classes of X , evi :

Mg,n(X, β) → X is the evaluationmap at the ithmarked point, and
ψi = c1(Li) are the first Chern classes of the universal cotangent
line bundles Li on Mg,n(X, β). These numbers are interesting
from a variety of points of view: in string theory, they compute
worldsheet instanton effects for type IIA strings; in symplectic
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topology, they yield a highly sophisticated set of invariants of the
symplectic structure ω; in enumerative algebraic geometry, they
have an interpretation as a ‘‘virtual count’’ of holomorphic curves
inside X .

Kontsevich’s celebrated proof [2] of Witten’s conjecture [3,4]
relating the Korteweg–de Vries hierarchy to intersection theory
on the Deligne–Mumford moduli space of curves Mg,n suggested
a connection between Gromov–Witten theory and integrable
systems in the following form. Let ϵ and tα,p be formal symbols,
where α ∈ {1, . . . , hX }, hX := dimC H•(X,C) and p ∈ N, and
denote with t the set t := {tα,p} α∈hX

p∈N
. Write φ1 for the identity

of H•(X) and define x := t1,0. The all-genus, full-descendant
Gromov–Witten potential of X is the formal power series

F X (ϵ, t) =


g≥0

ϵ2g−2


β∈H2(X,Z)


n≥0


p1,...,pn

n
i=1

tαi,pi

n!

×

τp1(φα1) · · · τpn(φαn)

X
g,n,β . (2)

We then have the following.

Conjecture 1.1. Let F X (ϵ, t) denote the all-genus full descendant
Gromov–Witten potential of X. Then there exists a Hamiltonian
integrable hierarchy of PDEs such that ϵ2F X (ϵ, t) is the logarithm of
a τ -function associated with one of its solutions. The variables tα,p are
identified with times of the hierarchy, and the genus counting variable
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ϵ with a perturbative parameter in a small dispersion expansion of the
equations.

The case X = {pt} is the statement of the Witten–Kontsevich
theorem. This connection has provided a mutually fruitful source
of insights for the integrable systems community on one hand, and
for symplectic and algebraic geometers on the other.

After the Witten–Kontsevich theorem, a lot of effort has
been put to further elucidate the origin of integrability in
Gromov–Witten theory, and to find constructive proofs of
Conjecture 1.1 for more general target spaces. Research in
this direction has received much attention in the early 90’s,
starting from the discovery by Dubrovin and Krichever of a
clear link between topological Landau–Ginzburg models and
the hydrodynamics of weakly deformed soliton lattices [5,6].
Subsequently, the field gained furthermomentum fromDubrovin’s
systematic study of WDVV equations [3,7] and his universal
construction [8], for arbitrary homogeneous chiral algebras, of
dispersionless (bi-)Hamiltonian integrable hierarchies that encode
the descendent sector of the theory—namely, in the case of
quantum co-homologies, the complete set of descendent genus
zero Gromov–Witten invariants.

In more recent times, the (hard) task of incorporating dis-
persive corrections in the picture – corresponding, in the origi-
nal Witten–Kontsevich picture, to higher genus Gromov–Witten
invariants – has followed two main strands. On one hand, the
Dubrovin–Zhang program of classification of normal forms of bi-
Hamiltonian evolutionary hierarchies has provided a concrete in-
carnation of Virasoro constraints from the integrable system point
of view, along with a complete reconstruction theorem for higher
genus descendent invariants [9]; on the other, generalizations
of the Witten–Kontsevich correspondence were explicitly con-
structed for the quantum co-homology of simple target orbifolds,
such as BG [10] and [CP1/G] [11–14].

1.1. The resolved conifold and the Ablowitz–Ladik hierarchy

Inspired by the appearance of trilogarithmic prepotentials in
Dubrovin’s study of the Ablowitz–Ladik (AL) hierarchy [15], one
of us proposed in [16] that Conjecture 1.1 should hold true when
X is a particular local Calabi–Yau manifold of dimension three –
the resolved conifold – given by the strict transform of the nodal
quadric in A4, and the corresponding integrable hierarchy is the
Ablowitz–Ladik hierarchy [17]. The precise statement, which was
proven in [16] at the first feworders in the genus expansion, relates
a peculiar form of the AL hierarchy to the Gromov–Witten theory
of OP1(−1)[ν] ⊕ OP1(−1)[−ν], equivariant with respect to a fiber-
wise T ≃ C∗-action which covers the trivial action on the base
P1 and rotates the fibers with opposite weights; we denoted with
ν the first Chern class of the line bundle O(1) → BT ≃ CP∞.
Restricting to genus zero, primary invariants, this statement can
be rephrased as the equality of the quantum co-homology ring of
the resolved conifold in the equivariantly Calabi–Yau case with the
Frobenius structure that arises from a particular solution ofWDVV,
first encountered in the treatment of the AL system in [15].

This example, which is of remarkable importance in the
Gromov–Witten theory of Calabi–Yau threefolds, raised various
interesting questions: among them, the possibility to provide a
local mirror symmetry construction for this equivariant case, and
the explanation of the apparent breakdown of bi-Hamiltonianity
on the integrable system side. In this paper we study both
aspects in detail, by regarding the AL hierarchy as the Toeplitz
reduction of 2D-Toda [18–20]. We first of all build, in Section 2,
on the identification of the AL lattice with the Toeplitz lattice
and provide a clean proof of the invariance of the Toeplitz
condition under the 2D-Toda flows at the dispersive level in the
bi-infinite case. By observing that the Toeplitz Lax matrices admit
a factorization in terms of two bi-diagonal matrices, we show
that the Toeplitz lattice is an instance of rational reduction of the
2D-Toda hierarchy, which can be defined in general by analogy
with the rational reductions of KP hierarchy [21,22]. We then
apply the dispersionless Lax formalism of 2D-Toda to associate
a new, canonical Frobenius structure with the hierarchy. This
new Frobenius manifold is different from the one that appears in
Gromov–Witten theory: it fails to have a covariantly constant unit
vector field, but it satisfies all the other axioms of a Frobenius
manifold, including somewhat surprisingly the existence of a linear
Euler vector field. In particular, this entails the existence of a
local bi-Hamiltonian structure of Dubrovin–Novikov type [23],
to be contrasted with the inhomogeneity of the prepotentials
in [15,16] and the non-locality of the pairs constructed in [24].
A natural question that arises is then how this new Frobenius
structure and the quantum co-homology of the resolved conifold
are related to one another. We find in Section 3 that the relation
in question is remarkably given in the form of Dubrovin’s almost
duality of Frobenius manifolds [25]. By pushing the dispersionless
Lax formalism through the duality we obtain a logarithmic
Landau–Ginzburg mirror for local CP1, close in form to the LG
models proposed by Hori, Iqbal and Vafa for the non-equivariant
theory [26]. We finally study the period structure of the resulting
almost Frobenius manifold, and find a remarkable connection to
the theory of singularities of divisors considered in the context of
twisted Picard–Lefschetz theory by Givental in [27]. We conclude
in Section 4 with remarks on open problems and new avenues of
research.

2. Ablowitz–Ladik and 2D-Toda hierarchies

2.1. Ablowitz–Ladik system and Toeplitz lattice

The complexified Ablowitz–Ladik (AL) system [17] is given by
the pair of equations

ẋn =
1
2
(1 − xnyn)(xn−1 + xn+1),

ẏn = −
1
2
(1 − xnyn)(yn−1 + yn+1) (3)

defining the time evolution of two sequences of complex variables
xn, yn with n ∈ Z. The AL system admits an infinite number
of conservation laws and is part of a hierarchy of mutually
commuting evolutionary flows, usually described by semidiscrete
zero-curvature equations [17,19].

In the semi-infinite case the AL hierarchy is equivalent, as
noted in [18,19] and shown in detail by Cafasso [20], to a peculiar
reduction of the 2D-Toda lattice hierarchy, called the Toeplitz
lattice, which naturally arises in the study of the integrable
dynamics of moment matrices associated with biorthogonal
polynomials on the unit circle and whose orbits are selected by
Toeplitz initial data for an associated factorization problem [28]. In
particular it describes the solution associatedwith a unitarymatrix
model [18].

Rather than dealingwith the semi-infinite case,wepresent here
a slightly more general definition of the Toeplitz lattice in the case
of bi-infinitematrices, i.e. we assume that thematrix indices below
span integer values, n,m ∈ Z. This choice turns out to be somehow
more natural, allowing us to easily identify the Toeplitz lattice
with a rational reduction of the 2D-Toda hierarchy and to obtain
the dispersionless limit that we need later. The semi-infinite case
will be recovered as a further simple reduction (see Appendix A
for further details of this analysis in the case of the semi-infinite
Toeplitz lattice).
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Recall that the 2D-Toda Lax matrices [29] are given by

L1 = Λ+


j≤0

u(1)j Λj, L2 = u(2)
−1Λ

−1
+


j≥0

u(2)j Λj (4)

whereΛ is the shift matrix

Λn,m = δn+1,m, (5)

the diagonal matrices u(i)j represent the dependent variables and
the matrix indices n,m ∈ Z. The 2D-Toda flows can be written in
the Lax form as

∂s(1)j
Li =


Lj1


+

, Li

, ∂s(2)j

Li =


Lj2


−

, Li

, i = 1, 2 (6)

where we denoted by M+ (resp. M−) the upper (resp. lower)
diagonal part of a matrix M , including (resp. excluding) the main
diagonal.

Definition 2.1. We say that L1 and L2 are Toeplitz Lax matrices if
they can be written in the form1

L1 =



. . .

−x−1y−2 1 0 0 0
−ν−1x0y−2 −x0y−1 1 0 0

−ν−1ν0x1y−2 −ν0x1y−1 −x1y0 1 0
−ν−1ν0ν1x2y−2 −ν0ν1x2y−1 −ν1x2y0 −x2y1 1

−ν−1ν0ν1ν2x3y−2 −ν0ν1ν2x3y−1 −ν1ν2x3y0 −ν2x3y1 −x3y2
. . .


,

(7a)

L2 =



. . .

−x−2y−1 −x−2y0 −x−2y1 −x−2y2 −x−2y3
ν−1 −x−1y0 −x−1y1 −x−1y2 −x−1y3
0 ν0 −x0y1 −x0y2 −x0y3
0 0 ν1 −x1y2 −x1y3
0 0 0 ν2 −x2y3

. . .


(7b)

where xn, yn ∈ C, n ∈ Z and νn := 1 − xnyn.

We will prove shortly that this is indeed a symmetry reduction of
the 2D-Toda lattice.

It is convenient to write these matrices in the equivalent form

L1 = Λ− x+

1 − (1 − xy)Λ−1−1

y, (8a)

L2 = (1 − xy)Λ−1
− x (1 −Λ)−1 y+ (8b)

where x, resp. y, are diagonal matrices with entries given by xn,
resp. yn, and x+ denotes the shifted variable x,Λx = x+Λ.

Here and in the following the formal inverse of a matrix of the
form 1− X is given by geometric series in X and for this reason we
sometimes denote it with 1

1−X . Note that this is a proper (left and
right) inverse of the bi-diagonal matrix 1 − X with respect to the
usual matrix multiplication.2

Note that we can also write

L1 = Λ
1
ν


1 − x

1
1 − νΛ−1

y

,

L2 =


1 − x

1
1 −Λ

y

Λ−1.

(9)

1 The horizontal and vertical lines separate the entries with negative and non-
negative values of indices.
2 One should be aware of several fragile features of matrix multiplication when

dealing with bi-infinite or semi-infinite matrices. In particular properties like
associativity of the matrix product, existence and uniqueness of left and right
inverses and their relation with the inverses of the corresponding linear map may
not be taken for granted. See e.g. [30] for some examples.
One can easily recognize L2 to be a simple extension to the bi-
infinite case of the semi-infinite version given in [18]. On the other
hand L1 is usually given in a dressed form. To see this, let ℓ be a
diagonal matrix

ℓ = diag (. . . , ℓ−1, ℓ0, ℓ1, . . .) (10)

with entries that satisfy

ℓn+1

ℓn
= 1 − xn+1yn+1, n ∈ Z. (11)

Then

Lemma 2.1. We have

ℓ−1L1ℓ = Λ


1 − x

1
1 −Λ−1

y


where (1 −Λ−1)−1 is given by the matrix


k≥0Λ
−k.

Proof. A simple computation, rewriting (11) as

ℓΛℓ−1
= Λ

1
1 − xy

, ℓΛ−1ℓ−1
= (1 − xy)Λ−1. �

Explicitly

ℓ−1L1ℓ =



. . .

−x−1y−2 ν−1 0 0 0
−x0y−2 −x0y−1 ν0 0 0
−x1y−2 −x1y−1 −x1y0 ν1 0
−x2y−2 −x2y−1 −x2y0 −x2y1 ν2
−x3y−2 −x3y−1 −x3y0 −x3y1 −x3y2

. . .


which is the obvious extension of ℓ−1L1ℓ appearing in the semi-
infinite Toeplitz lattice.

We now show that the form of these matrices is preserved by
2D-Toda flows and that they correspond to the simplest rational
reduction. This follows from two simple observations.

Proposition 2.2. The Lax operators Li can be factorized as

L1 = AB−1, L2 = BA−1 (12)

where the bi-diagonal matrices A and B are given by

A = −
1
y+
(1 −Λ)y, B =

1
y
(1 − νΛ−1)y. (13)

Proof. A simple computation, in the case of L2

BA−1
= −

1
y


1 − νΛ−1 (1 −Λ)−1 y+

=
1
y


νΛ−1(1 −Λ)− xy


(1 −Λ)−1y+

=
ν

y
Λ−1y+

− x(1 −Λ)−1y+

that is equal to (8b). Notice that in the second equality we have
used the identity Λ−1Λ = 1, which is not satisfied in the semi-
infinite case. �
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Explicitly

A =



. . .

−
y−1
y0

1 0

0 −
y0
y1

1
0 0 −

y1
y2

. . .


,

B =



. . .

−ν−1
y−2
y−1

1 0

0 − ν0
y−1
y0

1
0 0 −ν1

y0
y1

. . .


.

Weprove that rational Laxmatrices (12) are invariant under the
2D-Toda flows following an argument similar to that of [21] for the
rational reductions of the KP hierarchy.

Proposition 2.3. Given infinite matrices of the form

A = Λ+ a, B = 1 + bΛ−1 (14)

for diagonal matrices a, b, the equations

As(1)i
= ((AB−1)i)+A − A((B−1A)i)+,

Bs(1)i
= ((AB−1)i)+B − B((B−1A)i)+,

(15a)

As(2)i
= ((BA−1)i)−A − A((A−1B)i)−,

Bs(2)i
= ((BA−1)i)−B − B((A−1B)i)−

(15b)

are well-defined and induce the 2D-Toda equations (6) on the Lax
operators (12).

Proof. Let us check the first equation in (15a). Clearly the right-
hand side is upper triangular. Rewriting it as

A((B−1A)i)− − ((AB−1)i)−A

one concludes that it is actually diagonal, hence the equation
is well-defined. A simple computation shows that deriving the
rational Lax operators given in (12) with A, B of the form (14)
with respect to the times s(j)i in (15) one obtains the 2D-Toda Lax
equations (6). �

2.2. Hamiltonian formalism and dispersionless limit

The bi-infinite Toeplitz flows can be cast in Hamiltonian form

∂xn
∂s(k)i

= (1 − xnyn)
∂H(k)i

∂yn
,

∂yn
∂s(k)i

= −(1 − xnyn)
∂H(k)i

∂xn
(16)

where the Hamiltonians

H(k)i := −
1
i
Tr Lik, i = 1, 2, 3, . . . , k = 1, 2 (17)

mutually commute with respect to the symplectic structure

ω :=


k∈Z

dxk ∧ dyk
1 − xkyk

. (18)
The first equations of the hierarchy, i.e. the Ablowitz–Ladik
system (3), correspond to the combination of Hamiltonians

HAL :=
1
2
(H(1)1 + H(2)1 ) = −

1
2
Tr (L1 + L2)

=
1
2


i∈Z

(xi+1yi + xiyi+1) .

To conclude our treatment of the Toeplitz lattice as rational
2D-Toda reduction we prove that

Proposition 2.4. The Hamilton equations (16) induce on the matri-
ces (13) the flows (15).

Proof. As noted in previous proof, both sides of the first equation
in (15a) are diagonal, hence it can be written

∂

∂s(1)i


yn

yn+1


=

yn
yn+1


(AB−1)i − (B−1A)i


n,n . (19)

On the other hand the Hamilton equations (16) give

∂

∂s(1)i


yn

yn+1


=

yn
yn+1


−
νn

yn

∂H(1)i

∂xn
+
νn+1

yn+1

∂H(1)i

∂xn+1


. (20)

We need to check that (20) implies (19). Using the fact that L1 =

AB−1 and that A does not depend on xn we can compute

∂H(1)i

∂xn
= (y−Λ−1B−1Li1)n,n

and

−
νn

yn

∂H(1)i

∂xn
= −


νy−

y
Λ−1B−1Li1


n,n

=

(AB−1)i


n,n −


B−1(AB−1)i


n,n , (21)

where, in the last equality, we have used the identity

−
νy−

y
Λ−1

= B − 1

which follows from (13). Similarly

νn+1

yn+1

∂H(1)i

∂xn+1
=


νy−

y
Λ−1B−1Li1


n+1,n+1

=


B−1Li1

νy−

y
Λ−1


n,n

= −

(B−1A)i


n,n +


B−1(AB−1)i


n,n . (22)

Substituting (21) and (22) in (20) we conclude. The rest of the
Eqs. (15) are obtained from theHamilton equationswith analogous
computations which we leave as an exercise to the reader. �

Remark 2.5. We already mentioned that the multiplication might
not be associative in the case of infinitematrices (see [30]). Indeed,
from the factorization (12) one is tempted to conclude that L1L2 =

(AB−1)(BA−1) equals, assuming associativity, to A(B−1B)A−1
= 1.

However it is easy to check from (7) that L1L2 ≠ 1 ≠ L2L1. A version
of this constraint will nonetheless work in the semi-infinite case.

In view of the last remark, it is worth to point out that the semi-
infinite Toeplitz lattice departs slightly from the bi-infinite case,
and it is interesting to investigate on its own especially in view of
its connection to unitarymatrixmodels [18].We give the details of
this case in Appendix A.
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Following [15], we introduce the pair of variables

w = log (1 − xy) ,

v =
1
2


1 −Λ−1 (log x − log y).

(23)

In the last formula Λ−1 simply denotes the inverse shift, acting
on a sequence fn as (Λf )n = fn−1. With this choice of dependent
variables, the Lax matrices can be rewritten as

L1 = Λe−w


1 −

√
1 − ew

1
1 − ev+wΛ−1

√
1 − ew


,

L2 =


1 −

√
1 − ew

1
1 −Λe−v

√
1 − ew


Λ−1.

(24)

In this case

L1 = AB−1, L2 = BA−1

for

A = −
ev

+
1 − ew+


1 − e−v+Λ


,

B =
1

√
1 − ew


1 − ev+wΛ−1 .

These matrices can be alternatively seen as formal difference
operators acting on the real line and, correspondingly, the
dependent variables v andw as functions of a space variable x (not
to be confused with the dependent variable denoted above with
the same symbol).

This observation allows us to straightforwardly obtain the long-
wave limit of the Toeplitz lattice in Lax form. The symbols of the Lax
operators [31]

λi(p) = σLi(p), i = 1, 2

are given by rational functions

λ(p) := λ1(p) = p


p − ev

p − ev+w


= (λ2(p))−1, (25)

hence the dispersionless Lax equations can be compactly written
in terms of the Lax symbol λ(p) as

∂λ

∂s(1)n
= {(λn)+, λ}[L],

∂λ

∂s(2)n
= {(λ−n)−, λ}[L], i = 1, 2, (26)

where ()± denote the projections to the analytic and principal part
and the Poisson bracket {, }[L] is defined as

{a(p, x), b(p, x)}[L] := p
∂a(p, x)
∂p

∂b(p, x)
∂x

− p
∂a(p, x)
∂x

∂b(p, x)
∂p

. (27)

2.3. A conformal Frobenius manifold for the AL hierarchy

The dispersionless Lax formalism for the Toeplitz reduction
of 2D-Toda paves the way to canonically associate a Frobenius
manifold with the AL hierarchy. We denote by Mg;n1,...,nm the
Hurwitz space

Mg;n1,...,nm =

(Γ ; p1, . . . , pm; f ):Γ smooth projective,

dimC Γ = 1, h1,0(Γ ) = g,

f :Γ → CP1
∈ OΓ \{p1,...,pm}, ef (pj) = nj


/ ∼ (28)
where the quotient is under biholomorphic equivalence. We can
view the dispersionless Lax operator

λ(p) = p + ev(ew − 1)+ e2v+w
ew − 1

p − ev+w
(29)

as the datum of a degree 2 covering map λ : CP1
→ CP1 which

is unramified at infinity, that is, [(λ(p),CP1)]/∼ ∈ M0;1,1, where
we pick an equivalence class under Möbius transformation in the
form (29). We have in this case

p1 = ∞, p2 = ev+w. (30)
By regarding (29) as the tree-level superpotential of a topological
Landau–Ginzburg model [6,32,5], we can associate a Frobenius
structure with M0;1,1 as follows. Let [Γ , f ] ∈ Mg,n1,...,nm , 0 < D <m

i=1 nipi a divisor on Γ and dω ∈ H1,0
∂̄
(Γ \ D) a meromorphic

differential, possibly with poles at pi of orders less than ni +

1. The pair (Mg;n1,...nm , dω) can be endowed with the structure
of a Frobenius manifold through the Landau–Ginzburg formulas
[33,32]

η(∂i, ∂j) =


Resdλ=0


∂iλ(p)∂jλ(p)

λ′(p) dp
dω

dω


(31)

c(∂i, ∂j, ∂k) =


Resdλ=0


∂iλ(p)∂jλ(p)∂kλ(p)

λ′(p) dp
dω

dω


(32)

where the differentiations with respect to ti in (31), (32) have
to be performed at fixed ω := pv

 p
p1

dω (see [32]). In order
for (Mg;n1,...nm , dω) to satisfy all axioms of a Frobenius manifold,
dω should fall in one of five different categories of meromor-
phic 1-forms, which were characterized in detail in [6,32]; such
1-differentials go under the name of admissible primary differen-
tials. We refer the reader to [32] for more details, and concentrate
on the case ofM0;1,1 in the following.

For the case of M0;1,1, Dubrovin’s classification reduces to one
case: dω is the unique meromorphic third kind differential with
Resp=p1dω = 1, Resp=p2dω = −1, (33)
i.e., when p1 = ∞,

dω =


pdp

p2(p − p2)
for p2 ≠ 0

−
dp
p

for p2 = 0.
(34)

In this case, the Frobenius manifold induced by (31), (32) is the
one associated with the Extended Toda hierarchy [34], which is in
turn related to the Gromov–Witten theory of the projective line. In
our case, the Toeplitz reduction of 2D-Toda (56) binds us to take as
primitive form

dω =
dp
p

(35)

which is not admissible; as a consequence, moving from 1D-Toda
to AL implies that the solution of WDVV associated with (31),
(32) will not satisfy all axioms of a Frobenius manifold. With a
slight abuse of language, we will sometimes refer to this weaker
structure3 induced onM0;1,1 still as a ‘‘Frobenius manifold’’.

This section is devoted to a thorough characterization of this
canonical Frobenius structure associatedwith theALhierarchy.We
have the following

3 A convenient name could be ‘‘almost-Frobenius manifold’’, as the type of
solution of WDVV bears many resemblances with those considered in [25], albeit
differing in one important aspect (namely E ≠ e). Still, as Dubrovin’s ‘‘almost-
duality’’ will play a different role elsewhere in the text, we will refrain from doing
so.
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Theorem 2.6. Eqs. (31), (32) endow the Hurwitz space M0;1,1 with
the structure of a charge d = 1, non-degenerate, semi-simple Frobe-
nius manifold MAL := (M0;1,1, e, E, η, F0) with a non-covariantly
constant unit e. In flat co-ordinates t1, t2 for the metric η, the pre-
potential reads

F0 =
1
2
t2t21 + et2 t1 +

1
2
t21 log t1 (36)

whereas the unit e and the Euler vector field E are given as

e =
t1∂t1 − t2
t1 − et2

, (37)

E = t1∂t1 + t2. (38)

Proof. The proof follows from a straightforward calculation from
(31), (32). We reproduce here the main steps.

It is immediate to check that the metric η is flat. Introducing
co-ordinates (t1, t2) such that

ev = et2 − t1, w = t2 − log(et2 − t1), (39)

the metric η takes the off-diagonal form

η

∂ti , ∂tj


= δi+j,3. (40)

In this co-ordinates, the Landau–Ginzburg formula (32) for the
structure constants yields the expression (36) for the prepotential.

As for the usual theory of Frobenius structures on Hurwitz
spaces, the critical values of the superpotential give a set of
canonical co-ordinates of the Frobenius manifold. Denoting by q1,2
the critical points of λ(p),

q1 = e
t2
2


e

t2
2 +

√
t1

,

q2 = e
t2
2


e

t2
2 −

√
t1

, (41)

canonical co-ordinates are given as

u1 = λ(q1) =


e

t2
2 +

√
t1
2
,

u2 = λ(q2) =


e

t2
2 −

√
t1
2
, (42)

and it is straightforward to check that the corresponding vector
fields give idempotents of the algebra (32)

∂γ uc
γ

αβ = ∂αu∂γ u. (43)

In particular, the Frobenius algebra induced on the tangent bundle
ofM0;1,1 is generically semi-simple.

With this ingredients at hand, we can readily determine the
expression for the unit e and the Euler vector field E. By definition,
we have

e = ∂u1 + ∂u2 (44)

and (42) implies (37). On the other hand, we know that in the usual
theory of Frobenius manifolds associated with Hurwitz spaces, the
vector

E :=


i=1,2

ui∂ui (45)

is the Euler vector field of the Frobenius manifold. For the case at
hand, (45) becomes, in flat co-ordinates

E = t1∂t1 + ∂t2 . (46)
This is indeed the Euler vector field for the solution of WDVV (36).
Up to quadratic terms, we have explicitly

LEF0 = 2F0 = (3 − 1)F0, (47)

namely, the Frobenius structure is quasi-homogeneous, with
charge d = 1. Its non-degeneracy

[e, E] = e (48)

follows trivially from (37), (38). �

Remark 2.7. As compared to the classical definition of a Frobenius
manifold, we see that the axiom of covariant constancy of the unit
vector field with respect to the Levi–Civita connection of η

∇e = 0 (49)

is violated by (36). In particular

∂α∂βLeF0 ≠ ηαβ . (50)

Somewhat remarkably, though, the grading axiom, which states
that the Euler vector field is linear

∇∇E = 0 (51)

is instead respected, as is manifest from (38).

2.4. Bi-Hamiltonian structure

Denote by {, }i, i = 1, 2 the Poisson brackets of hydrodynamic
type on the loop spaceL(MAL) associatedwith themetricη and the
intersection form g respectively. Recall that the intersection form
is the bilinear pairing on the cotangent bundle T ∗MAL defined by

g(w1, w2) := iE(w1 · w2) (52)

where the product of the 1-forms wi is induced on T ∗MAL by the
Frobenius algebra on the tangent by the map η : TMAL → T ∗MAL.

It is a general result of the theory of Frobenius manifolds
that the contravariant metrics η and g form a flat pencil; this in
particular implies that the associated Poisson brackets {, }i are
compatible. In the present case the compatibility is confirmed by a
straightforward computation.

In flat coordinates the Poisson brackets are given by

{t1(x), t2(y)}1 = δ′(x − y),

with the other entries equal to zero, and

{t1(x), t1(y)}2 = 2t1et2δ′(x − y)+ (t1et2)′δ(x − y), (53a)

{t1(x), t2(y)}2 = (t1 + et2)δ′(x − y)+ (t1 + et2)′δ(x − y), (53b)

{t2(x), t2(y)}2 = 2δ′(x − y). (53c)

Remark 2.8. The Poisson pencil {, }1 + z{, }2 is not exact: it can be
easily proved that there is no vector field X such that

LieX {, }2 = {, }1, LieX {, }1 = 0. (54)

This fact is a direct consequence of dropping the axiom of
flatness of e: indeed, all Poisson pencils associated with Frobenius
manifolds with flat unit are exact; in such a case a vector field X
such that (54) holds is given by the unit e.

Remark 2.9. Note that we do not claim any relation of these
Poisson structures with the Poisson structures of 2D-Toda [35]
or with the symplectic form (18) of the Toeplitz lattice. It would
be interesting to obtain the Poisson pencil presented here as a
reduction of the 2D-Toda Poisson pencil, or to obtain dispersive
counterparts of the Poisson brackets {, }i.
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Considering the last remark is somehow unexpected that the
2D-Toda Hamiltonians and the Poisson brackets given above
provide the correct flows. Denote

H (i)
n =


h(i)n (v,w)dx, (55)

where h(i)n for n ≥ 1, i = 1, 2 are the dispersionless Hamiltonian
densities obtained by restriction of the dispersionless 2D-Toda
Hamiltonian densities to the submanifold of symbols of the form
(25), i.e.

h(1)n = −Resp=∞

λn

n
dp
p
, h(2)n = Resp=0

λ−n

n
dp
p
. (56)

These densities can be written in closed form in terms of
hypergeometric functions. We have

h(1)n = −Resp=∞

λn

n
dp
p

= −Resp=∞

1
n


p

p − ev

p − ev+w

n dp
p

=
env

n n!
dn

dxn


1 − x

1 − xew

n
x=0

=
env

n n!

n
k=0


n
k


dn−k

dxn−k
(1 − x)n

dk

dxk
(1 − xew)−n


x=0

=
(−1)nenv

n

n
k=0


n
k


n + k − 1

k


(−ew)k

=
(−1)nenv

n 2F1 (−n, n; 1; ew) (57)

and, by a similar computation,

h(2)n =
(−1)ne−nv

n 2F1(n,−n, 1; ew).

As an example, the dispersionless Ablowitz–Ladik Hamiltonian
reads

HAL := −
1
2

 
h(1)1 (v,w)+ h(2)1 (v,w)


dx

=


(1 − ew) cosh v dx. (58)

We have the following results, which will be proven in the
Appendix.

Proposition 2.10. The dispersionless AL flows (26) admit the
following Hamiltonian formulation

∂

∂s(1)n
· = {·,H

(1)
n+1}1,

∂

∂s(2)n
· = {·,H (2)

n }1,

for n > 0.

Note the somewhat surprising relation of the 2D-Toda Hamil-
tonians with the restrictions of the 2D-Toda Lax flows. Even more
surprisingly:

Proposition 2.11. The Hamiltonians H
(i)
n satisfy the following

recursion relations for n > 0

{·,H (1)
n }2 = {·,H

(1)
n+1}1, (59)

{·,H
(2)
n+1}2 = {·,H (2)

n }1. (60)
The first sequence of Hamiltonians H
(1)
n is obtained by the

bi-Hamiltonian recursion (59) starting from the Casimir H
(1)
1 =

t1 dx of {, }1. The second recursion involves the Hamiltonians
H
(2)
n in a somewhat opposite order; moreover this second chain

does not contain theCasimir

t2 dx, which turns out to be aCasimir

of both Poisson brackets, a phenomenon related to the resonance
of the spectrum of MAL.

As in the case of Frobenius manifolds with flat unit, one can
define the deformed flat connection ∇̃ of MAL × C∗ and construct
a Levelt basis of deformed flat coordinates θα(ζ ) which provide
the Hamiltonians of the associated Principal hierarchy on the loop
space L(MAL). They are given by

h̄α,p =


θα,p+1 dx, α = 1, 2, p ≥ −1

where the densities are obtained by expanding

θα(ζ ) =


p≥0

θα,pζ
p

in the deformation parameter ζ . An explicit computation shows
that the generating function of the densities h(1)n obtained in the
reduction from 2D-Toda

f (ζ ) =

∞
p=0

h(1)p+1

p!
ζ p, (61)

has horizontal differential w.r.t. the extended deformed connec-
tion on MAL × C∗

∇̃df (ζ ) = 0. (62)

At the level of the generating function we have

f (ζ ) = (1 − ew)evΨ2

1; 1, 2; ζev(1 − ew),−ew+vζ


(63)

where we denoted by Ψ2(a; b, c; x, y) the generalized hypergeo-
metric Humbert function [36]

Ψ2(a; b, c; x, y) :=

∞
l,m=0

(a)l+m

(b)l(c)m

xlym

l!m!
(64)

and with (a)n the Pochhammer symbol Γ (a + n)/Γ (a). The
leading order in the ζ -expansion of (63) shows that f (ζ ) yields the
deformed flat co-ordinate θ1(ζ ) = θ2(ζ ), hence in this case

θ2,p =
h(1)p+1

p!
. (65)

For the other co-ordinate, by solving recursively the deformed
flatness equations, we obtain

θ1,0 = t2,
θ1,1 = et2 + t1(t2 + log t1 − 1),

θ1,2 =
t1
4
(2(2et2 + t1) log t1 + t1(2t2 − 1)

+ 4et2(t2 − 1))+
1
4
e2t2 .

From the general theory it follows that the Hamiltonians h̄α,p
satisfy the bi-Hamiltonian recursion relations

{·, h̄1,p−1}2 = 2{·, h̄2,p−1}1 + p{·, h̄1,p}1,

{·, h̄2,p−1}2 = (p + 1){·, h̄2,p}1

for p ≥ 0. The recursion relation for the first set of Hamiltonians
takes into account the resonance of spectrum of MAL mentioned
above.



A. Brini et al. / Physica D 241 (2012) 2156–2167 2163
Remark 2.12. Another remarkable fact related to the non-flatness
of e is that the momentum functional p = t1t2 generating the
x-translations does not appear among the Hamiltonians densities
θα,p of the Principal hierarchy.

Remark 2.13. We conclude by emphasizing the different origin of
the Hamiltonian densities introduced above: the h(i)n are simply the
2D-Toda Hamiltonians restricted to the submanifold (25); the θα,p
are the Hamiltonians which define the Principal Hierarchy and are
obtained by solving the deformed flatness equations associated to
the FrobeniusmanifoldMAL. It turns out that half of these functions
coincide, up to a factor, cf. (65). In other words, the positive half of
the dispersionless AL-hierarchies yields automatically half of the
Principal Hierarchy of MAL, corresponding to the flows obtained
from the deformed flat co-ordinate t1(ζ ). An analogous expression
of the other half of the Levelt basis in terms of the reduction to
(25) of the 2D-Toda Hamiltonians should presumably be more
complicated, and it would be interesting to trace its precise form.

3. Mirror symmetry for local CP1

3.1. Dubrovin’s almost duality and a logarithmic Landau–Ginzburg
mirror

In the light of our findings in Section 2, it is natural
to ask whether the Frobenius structure associated with the
Gromov–Witten theory of the resolved conifold has anything to do
with the one in (36) and, if so, whether we can learn anything new
about the former from our discussion of the Toeplitz reduction and
its dispersionless limit. We now turn to answer both questions in
the affirmative.

A key role in the discussion to follow will be played
by Dubrovin’s notion [25] of ‘‘duality of (almost)-Frobenius
manifolds’’, which we briefly recall here. Let M := (M, e, E, η, F0)
be a Frobenius manifold, with unit e, Euler vector field E, flat
invariant pairing η and structure constants cγα,β = ηγ δ∂3αβδF0. As
in (52) we associate with this data a bilinear form g on T ∗M , called
intersection form. On the complement of the discriminant, i.e. the
analytic subset discrM ⊂ M where g is degenerate, the inverse of
the intersection formdefines a second flatmetric (we still denote it
by g). We can associate with M another solution of WDVV, which
does not in principle satisfy all axioms of a Frobenius manifold.

Definition 3.1. The Dubrovin dual M of a FrobeniusmanifoldM is
the quadruplet (M, E, g,F0), where M = M \discrM , E is the Euler
vector field on M , g is the second metric. In flat co-ordinates pi for
g , F0 is defined as to satisfy

∂3F0
∂pi∂pj∂pk

= GiaGjb
∂tγ
∂pk

∂pa
∂tα

∂pb
∂tβ

cαβγ (66)

where Gij is the Gram matrix of the metric g .

Theorem 3.1 (Dubrovin, [25]). The dual prepotential (66) induces a
commutative, associative product ⋆ : TM ⊗ TM → TM,

∂i ⋆ ∂j = E−1
· ∂i · ∂j (67)

under which the intersection pairing is invariant

g(∂i ⋆ ∂j, ∂k) = g(∂i, ∂j ⋆ ∂k). (68)

In particular, the Euler vector field on M is the identity of the dual
product on M.
Remark 3.2. The solutions of WDVV obtained by the duality (67)
do not fulfill all axioms of a Frobenius manifold. First of all,
the Euler vector field – that is, the dual unity field – need not
be covariantly constant under the Levi–Civita connection of g .
Secondarily, when the charge d of M is different from 1, the dual
prepotential is homogeneous of degree (1 − d) under LE [25], but
it need not satisfy a quasi-homogeneity condition if d = 1. Note
that in our case, while the dual prepotential will indeed fail to
be homogeneous, the dual unit vector field will turn out to be
nonetheless covariantly constant.

Remark 3.3. It should be stressed that in the definition (67) of the
dual product, and in the proof of its associativity, no reference is
made to the fact the unit e of M be constant in flat co-ordinates tα .
In other words, the notion of Dubrovin-duality generalizes to the
case in which e is not covariantly constant under the Levi–Civita
connection of η.

When a Landau–Ginzburg description of M is available we
can obtain a rather compact picture of Dubrovin’s duality. It is
straightforward to show [25] that the intersection pairing and dual
product are obtained by sending λ → log λ in (31), (32):

g(∂i, ∂j) =


Resdλ=0


∂i log λ(p)∂j log λ(p)

λ′(p) dp
dω

λdω


(69)

c(∂i, ∂j, ∂k)
=


Resdλ=0


∂i log λ(p)∂j log λ(p)∂k log λ(p)

λ′(p) dp
dω

λdω


(70)

where the sums run over critical points of the superpotential λ.
It is natural to conjecture that the notion of Dubrovin-duality

could be the key to connect the Toeplitz lattice hierarchy to the
topological hierarchy of [16]. Indeed, consider the T ≃ C∗-
equivariant Gromov–Witten theory of a toric variety X , where T
acts on X with compact fixed loci. Then the genus zero primary
T -equivariant Gromov–Witten potential of X

FX
0 =

∞
n=0


β∈H2(X,Z)


α1,...,αn

tα1 . . . tαn
n!


φα1 . . . φαn

X
0,n,β (71)


φα1 . . . φαn

X
g,n,β =


[Mg,n,β ]vir

n
i=1

ev∗

i φαi ,

φj ∈ H•

T (X,C), φ1 = 1 (72)

is, as in ordinary non-equivariant Gromov–Witten theory, a
solution of WDVV for which the fundamental class and point
splitting axiom [37] pin down the direction of the unit 1 ∈ H•(X)
as the one that induces the Poincaré pairing on H•(X)

∂3FX
0

∂t1∂tα∂tβ
=


X
φα ∪ φβ = η(∂α, ∂β) (73)

i.e., a flat invariant pairing on TH•(X). In other words, in presence
of a torus action the tangent bundle of the equivariant quantum co-
homology MX = QH•

T (X) is again endowed with the structure of a
commutative, associative algebra with a covariantly constant unit.
What departs from the ordinary theory of Frobenius manifolds
is the existence of an Euler vector field, as the degree axiom
of Gromov–Witten theory breaks down, due to the non-trivial
grading of the ground ring C(ν) of QH•

T (X). As a consequence, the
genus zero equivariant Gromov–Witten potential of X	T is still a
solution of WDVV, but it fails to be quasi-homogeneous.

As was discussed in detail in [38], the Dubrovin-duals of charge
d = 1 Frobeniusmanifolds are solutions ofWDVVwith covariantly
constant unit, whereas the dual Euler vector field is ill-defined.
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They are therefore the natural structures to look at in order to
connect our results in Section 2 to the topology of moduli spaces.
We have indeed the following

Theorem 3.4. The Dubrovin dual MAL of the Frobenius manifoldMAL
associated with the Toeplitz reduction of 2D-Toda is the Frobenius
algebra structure induced on TM0;1,1 by the dual prepotential

F0 =
1
2
v2w + Li3(ew), (74)

with constant unit E = ∂v . In (74), v and w are flat co-ordinates for
the intersection form and are defined as in (23), (29) and (39)

t2 = v + w,

t1 = ev(ew − 1).

Proof. The proof follows from a straightforward calculation from
(29), (69) and (70). �

The prepotential (74) coincides with the genus zero Gromov–
Witten potential of OP1(−1)[ν] ⊕ OP1(−1)[−ν] [16], upon sending
v → i v

ν
, where ν is the equivariant parameter of the anti-diagonal

C∗-action onOP1(−1)⊕OP1(−1). The combination of the Toeplitz
reduction with Dubrovin’s duality therefore yields a mirror
Landau–Ginzburg description of the Gromov–Witten theory of lo-
cal CP1, with a logarithmic superpotential

λ(p) = log

p

p − ev

p − ev+w


. (75)

3.2. Almost duality and twisted Picard–Lefschetz theory

We want to compute a system of deformed flat coordinates
for the Frobenius manifold MAL using oscillating integrals for the
Landau–Ginzburg model given by the superpotential (75).

Suchmodel corresponds to the twisted Picard–Lefschetz theory
of the meromorphic function λv,w(p) = p p−ev

p−ev+w . In particular
it corresponds to considering cycles in the complement of
λ−1
v,w(0), endowed with a local system of coefficients transforming

nontrivially upon circuit around such hypersurface, as opposed
to ordinary Picard–Lefschetz theory, which considers cycles on
λ−1
v,w(0).Wewill here review the basics of twisted Picard–Lefschetz

theory, referring the reader to [27] for more details.
Let us denote by π : X → P1

\ {0, ev, ev+w,∞} the cover whereλ(p) is defined (an infinite number of sheets joint at the branch
cuts [0, ev+w], [ev,∞]). The oscillating integral formula for the
deformed flat coordinates of MAL is

pα(z) :=
1

2π i


γα

ezλ(p) dp
p
, α = 1, 2. (76)

The integration cycles γ1, γ2 are a basis of the homology with local
coefficients H1(P1

\ {0, ev, ev+w,∞}, {0, ev}; L(q)).
In general, for a superpotential λ = log(λ(x, a)) with λ :

Cn
× Cµ → P1 and λa := λ(·, a) a meromorphic function,

the homology with local coefficients H•(Cn
\ λ−1

a ({0,∞}); L(q))
can be defined using the complex generated by singular chains
with coefficients in Z[q, q−1

] on the infinite cover X of Cn
\

λ−1
a ({0,∞}) where log(λ(x, a)) is defined; multiplication by q is

defined by the covering transformation moving each point up one
sheet (i.e. the deck transformation associatedwith a circuit around
λ−1
a (0)). Notice that, by assigning a specific complex value q =

e2π iz , we obtain the homology with a local system of coefficients
described by the function λz . This, in turn, is defined using the
chain groups generated over Z(e2π iz) by pairs (φ, s) where φ is
a singular simplex in Cn

\ λ−1
a ({0,∞}) and s is a specific branch
Fig. 1. Paths of integration for the twisted periods.

of λz |φ , quotiented by the relation e2π iz(φ, s) ∼ (φ, e2π izs). Then,
the usual boundary operator gives a complex and its homology is
denoted by H∗(Cn

\ λ−1
a ({0,∞}); Z(e2π iz)).

The homology groups Hn(Cn
\ λ−1

a ({0,∞}), λ−1
a (0); L(q)) of

Cn
\ λ−1

a ({0,∞}) relative to (a tubular neighborhood of) λ−1
a (0)

with local coefficients can be defined along the same lines as for
the absolute case.

Remark 3.5. It is interesting to notice [27,25] that, considering the
suspension λ̃a := λa(x) − y2 and the zero sets Va = λ−1

a (0),
Ṽa = λ̃−1

a (0)

Hn(Ṽa) ≃ Hn(Cn
\ λ−1

a ({0,∞}), λ−1
a (0); Z(−1)),

Hn(Va) ≃ Hn(Cn
\ λ−1

a ({0,∞}), λ−1
a (0); Z(1)).

In this way we could say that in twisted Picard–Lefschetz theory
the study of λ interpolates between a superpotential λ and
its suspension λ̃. The relevance of suspensions in local mirror
symmetry has already been pointed out in various places in the
literature, see e.g. [26,39].

3.3. Twisted periods

Let us now turn to the computation of the loop integrals
(76). A basis {γ1, γ2} for H1(P1

\ {0, ev, ev+w,∞}, {0, ev}; L(q))
is given by any lift to X of the two relative paths on (P1

\

{0, ev, ev+w,∞}, {0, ev}) issuing from ev and encircling ev+w or∞
respectively (see Fig. 1).

The integration can be performed explicitly by making π(γ1)
and π(γ2) tend to the segments [ev+w, ev] and [ev,∞]. Indeed it
is easy to see that
Cexp(v+w)
ϵ

ezλ(p) dp
p

→ 0,

Cexp(v)
ϵ

ezλ(p) dp
p

→ 0,
C∞
ϵ

ezλ(p) dp
p

→ 0
(77)

as ϵ → 0, where Ca
ϵ is the (non-closed) lift of a circle of radius ϵ

around p = a and −1 < z < 0.
Moreover, using Euler’s integral representation for the hyper-

geometric function

2F1(a, b, c, z)

=
Γ (c)

Γ (b)Γ (c − b)

 1

0
xb−1(1 − x)c−b−1(1 − zx)−adx, (78)

(for Re(c) > Re(b) > 0) we can express the remaining line
integrals as

p1(z) =
1

2π i


+

[ev+w ,ev ]
+


−

[ev ,ev+w ]


λz(p)

dp
p

=
1

2π i
(1 − e2π iz)

 ev

ev+w
λz(p)

dp
p

= −ze2π izezv(1 − ew)2F1(1 − z, 1 + z, 2, 1 − ew) (79)

where we used Γ (1 + z)Γ (1 − z) =
πz

sin(πz) and we applied the
change of variables p = ev(1 − (1 − ew)x) in (78).
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Similarly,

p2(z) =
1

2π i


+

[ev ,∞]

+


−

[∞,ev ]


λz(p)

dp
p

=
1

2π i
(1 − e2π iz)


∞

exp(v)
λz(p)

dp
p

= eπ izezv2F1(z,−z, 1, ew) (80)

where, this time, x = p in (78).

Remark 3.6. It is worthwhile to stress what happens when we
specialize to the suspension by setting z = 1/2, that is, when we
compute the odd periods of MAL. In this case, the universal cover X
reduces to an elliptic curve, and we obtain

p1


1
2


=

2ev/2 (E (1 − ew)− K (1 − ew))
π (ew − 1)

(81)

p2


1
2


= −

2iev/2E(ew)
π

(82)

where K(x) and E(x) denote the complete elliptic integrals of the
first and second kind respectively. Remarkably, upon identifying
u := ev(1 − ew/2), Λ4

:= ev+w , (81)–(82) yield respectively the
derivative of the effective prepotential and the quantum Coulomb
branch parameter ofN = 2 SU(2) super Yang–Mills theory in four
dimensions [40], in a vacuum parameterized by a classical value
u =


Trφ2


for the adjoint scalar and with RG invariant scaleΛ.

The twisted periods (79)–(80) give a basis of solutions for
the deformed flatness conditions associated with the prepotential
(74). We thus recover from the LG perspective the observation
of [16] that the quantum differential equation for OP1(−1)[−ν] ⊕

OP1(−1)[ν] factorizes in the product of an exponential ODE
satisfied by v (as required by the string -axiom) and a Gauss ODE
in the variable w. The choice of cycles in (79)–(80) however turns
out to be non-canonical from the point of view of Gromov–Witten
theory; in particular, they are related by an affine transformation
to the topological deformed flat coordinates ptopα (z) =


∞

p=0 p
top
α,pzp

for the resolved conifold, i.e. those deformed flat coordinates for
the associated non-homogeneous Frobenius manifold such that

ptopα,p := ∂tα,pF0, (83)

where nowF0 is the restriction to genus zero and to primary fields
of the Gromov–Witten potential (2) of OP1(−1)[ν] ⊕ OP1(−1)[−ν].
Explicitly, it was found in [16] that

p
top
1 (z) =


−

1
z

+ π cot(πz)− 2γ


2F1(−z, z, 1, ew)evz

−
πz

sinπz 2F1(z + 1,−z + 1, 2, 1 − ew)(1 − ew)evz (84)

p
top
2 (z) =

2F1(−z, z, 1, ew)evz − 1
z

where γ is the Euler–Mascheroni constant. By comparing with our
formulas above for the oscillating integrals, we find

p
top
1 (z)

p
top
2 (z)



=

 0
e−iπz

z
e−2iπz(1 + 2zγ − πz cot(πz))

z2
−πe−iπzz csc(πz)


×


p1(z)
p2(z)


−

1
z
0

 .
4. Outlook

We list here some possible developments of this work. First of
all, the bi-Hamiltonian structure we constructed deserves further
investigation: it would be important, on one hand, to elucidate
the relation with the bi-Hamiltonian structure of 2D-Toda, and
on the other, to find a full dispersive formulation of the pencil.
Moreover, the factorization of the Lax matrices that we observe
in the Toeplitz reduction points to a generalization of this system
to a class of rational reductions of the 2D-Toda hierarchy and, in
the dispersionless limit, to corresponding examples of (almost)
Frobenius manifolds.

Secondarily, our study of the Frobenius structure (36) suggests
that an interesting generalization of the Dubrovin–Zhang theory
should find a place in the case of conformal Frobenius manifolds
with non-constant unit, and, correspondingly, of bi-Hamiltonian
hierarchies with non-exact Poisson pencils. On a more practical
note, we remark also that the second half of the Levelt basis for
(36) needs further understanding and an explicit construction.

On thedual side, an enticing possibilitywould be to leverage our
construction of a Landau–Ginzburg mirror in order to shed some
light on the higher genus theory, and to generalize the picture to
more general target spaces. We leave these problems for future
investigation.
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Appendix A. The semi-infinite Toeplitz lattice

The semi-infinite Lax matrices are obtained by restricting the
matrix indices in (8)–(9) to non-negative values. They are indeed
simply given by the lower-right blocks in (7):

L1 =


−x1y0 1 0 0

−ν1x2y0 −x2y1 1 0
−ν1ν2x3y0 −ν2x3y1 −x3y2 1

−ν1ν2ν3x4y0 −ν2ν3x4y1 −ν3x4y2 −x4y3
. . .

 ,

L2 =


−x0y1 −x0y2 −x0y3 −x0y4

1 − x1y1 −x1y2 −x1y3 −x1y4
0 1 − x2y2 −x2y3 −x2y4
0 0 1 − x3y3 −x3y4

. . .

 .
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The first Lax matrix still factorizes as

L1 = AB−1

with semi-infinite matrices A, B still given by (13), while for L2 we
have

L2 = BA−1
+ E (A.1)

where the matrix E, which is zero except for the first row, is given
by

En,m =
ν0

y0
δn,0ym+1, n,m ≥ 0.

This is due to the fact that, in the semi-infinite case, thematrixΛ−1

is the right-inverse ofΛ but not its left-inverse; indeed, in this case

Λ−1Λ = 1 − E (A.2)

with E everywhere zero but in the upper-left corner, where it is
equal to 1. In the proof of Proposition 2.2 the left-inverse property
of Λ−1 is used only in the factorization of L2; using (A.2) instead,
we easily obtain (A.1).

In the semi-infinite case, the matrix product L1L2 does
not involve infinite sums and the problem with associativity
mentioned in Remark 2.5 does not arise. We need however to
correct L2 with the contribution of E; we have

Proposition A.1. In the semi-infinite Toeplitz lattice the Laxmatrices
satisfy the constraint

L1L̂2 = 1,

where

L̂2 = L2 − E =


−

y1
y0

−
y2
y0

−
y3
y0

−
y4
y0

1 − x1y1 −x1y2 −x1y3 −x1y4
0 1 − x2y2 −x2y3 −x2y4
0 0 1 − x3y3 −x3y4

. . .

 .

Note that the associativity problem is still present for the product
L̂2L1, which is not equal to the identity matrix.

A special role is played by the constraint x0y0 = 1, which is
in particular satisfied by the solution of the semi-infinite Toeplitz
lattice obtained from the unitary matrix model [18]. Under such
constraint, which is clearly preserved by the hierarchy (cf. Eq. (16)),
the matrix E vanishes, hence L1L2 = 1.

Remark A.2. Adler–van Moerbeke have shown [18,41] that the
ratios

xn = (−1)n
τ
(1)
n

τ
(0)
n
, yn = (−1)n

τ
(−1)
n

τ
(0)
n

, n ≥ 1

of the tau-functions of the unitary matrix integral defined by

τ (k)n =


U(n)
(detM)ke

∞
j=1

Tr(s(1)j M j
−s(2)j M̄ j)

dM

satisfy the semi-infinite Toeplitz lattice with x0(s) = y0(s) = 1
and xn(0) = yn(0) = 0 for n > 0. Since ν0 = 0, for such solution
we have L1L2 = 1.

Appendix B. Proofs of Propositions 2.10 and 2.11

Propositions 2.10 and 2.11 can be proven using standard
contiguity formulas for hypergeometric functions. A more elegant
approach based on expressing the Poisson brackets in terms of the
Lax symbol λ should be feasible and will be given elsewhere.

Proof of Proposition 2.10. Let us prove that the Lax and Hamilto-
nian formulations of the flows s(1)n coincide. The analogous state-
ment for the flows s(2)n can be proved in the same way. Let t1, t2 be
the flat coordinates of the metric η. The flow induced on

t1 = −Resp=∞λ
dp
p

by the Lax equations (26) can be written

∂t1
∂s(1)n

= −Resp=∞

∂λ

∂s(1)n

dp
p

= −Res{(λn)+, λ}[L]
dp
p

= −Res pλp((λn)−)x
dp
p

= −
∂

∂x
Res λndp

while the Hamiltonian flows on t1 read

∂t1
∂s(1)n

= {t1,H
(1)
n+1}1 =

∂

∂x
∂

∂t2
h(1)n+1.

Hence the Lax andHamiltonian flows are identified ifweprove that

− Resp=∞ λndp =
∂

∂t2
h(1)n+1. (B.1)

The residue on the left can be easily expressed in terms of
hypergeometric functions by a computation similar to (57) and is
equal to

n(−1)ne(n+1)vew 2F1(n + 1,−n, 2, ew)

where the field variables v, w were defined in (23). On
the other hand the derivative of h(1)n+1 is also expressed in
terms of hypergeometric functions using (57). A straightforward
computation shows that (B.1) reduces to the following identity of
hypergeometric functions

2F1(−n − 1, n + 1, 1; z)+
1 − z
n + 1

∂z2F1(−n − 1, n + 1, 1; z)

+ n2F1(n + 1,−n, 2; z) = 0,

which is a direct consequence of the following two standard
relations among contiguous hypergeometric functions

2F1(−n, n + 1, 1; z) = 2F1(−n − 1, n + 1, 1; z)

−
z

n + 1
∂z 2F1(−n − 1, n + 1, 1; z),

2F1(−n, n + 1, 2; z) =
z − 1

n(n + 1)
∂z 2F1(−n, n + 1, 1; z),

and the hypergeometric differential equation satisfied by ω =

2F1(−n − 1, n + 1, 1; z):

z(1 − z)ωzz + (1 − z)ωz + (n + 1)2ω = 0.

To complete the proof (we give only a sketch of this second part)
we have to show that the Lax andHamiltonian formulas induce the
same flows on the variable t2. It is equivalent, andmore convenient,
to show this for the function et2 t1 which is equal to the residue
−Resp=∞λdp. The Lax equations give

∂et2 t1
∂s(1)n

= −∂xResp=∞ λ
np dp − (t1)xRes λn dp (B.2)

and the Hamiltonian ones

{et2 t1,H
(1)
n+1}1 = et2

∂

∂x
∂

∂t2
h(1)n+1 + et2 t1

∂

∂x
∂

∂t1
h(1)n+1. (B.3)
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Again we can express the right-hand sides of these equations in
terms of hypergeometric functions, e.g. the first residue in (B.2) is

−∂xResp=∞ λ
np dp

=
n(n + 1)

2
(−1)ne(n+2)ve2w 2F1(n + 2,−n, 3; ew).

Expanding the derivatives in (B.2) and (B.3) and collecting the
coefficients of (ti)x, we obtain two identities of hypergeometric
functions which can be easily proved using hypergeometric
recursion formulas. �

Proof of Proposition 2.11. Here we only sketch the proof of the
first recursion Eq. (59) on the function t1. It is equivalent to

∂t1
∂v

{v,H (1)
n }2 +

∂t1
∂w

{w,H (1)
n }2 = {t1,H

(1)
n+1}1.

Evaluating both sides of this equation, respectively using variables
v, w and t1, t2, we again reduce it to an identity among
hypergeometric functions

1
n
z∂z fn +

1
n + 1

z∂z fn+1 = fn+1 − fn

where fn(z) := 2F1(−n, n, 1; z), which can be easily proved using
the relations between contiguous 2F1 functions. �
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