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1. Introduction

In the early 1980s, Dubrovin and Novikov [9,10] introduced the problem of characterizing the struc
ture and the deformations of homogeneous local Poisson brackets of degree k, which are since known as 
Dubrovin-Novikov brackets, differential-geometric Poisson brackets, or homogeneous Hamiltonian operators. 
In coordinates u1, . . . , un they can be written as

{ui(x), uj(y)}[k] =
k∑︂

s=0 
P ij
l (u, ux, . . . )δ(s)(x− y) (1.1)

with the coefficients P ij
l constrained by homogeneity in the number of x derivatives, skew-symmetry, and 

Jacobi identity.
It is known since [26] that a local homogeneous Poisson bracket should be studied as a finite-dimensional 

differential-geometric structure on a smooth manifold M . However, the geometric interpretation of the 
objects defined on M by the coefficients P ij

l and of the constraints imposed on them by the skew-symmetry 
and the Jacobi identity is still not clear for an arbitrary degree k. The structure problem is that of a 
geometrically meaningful formulation of these objects on M , and of the differential constraints to which 
they are subject, aiming at the classification of homogeneous Poisson brackets on M .

The importance of the homogeneous Poisson brackets is also due to the fact that they appear as leading 
term in the general form of dispersive Poisson brackets

{·, ·} =
∑︂
l⩾k 

{·, ·}[l] (1.2)

where each homogeneous term {·, ·}[l] is of the form (1.1). Higher degree terms can be regarded as a 
deformation of the leading-order homogeneous Poisson bracket of degree k. The basic structure describing 
such deformations is the Poisson cohomology of the leading homogeneous Poisson bracket.

Despite several results in low degree k, for the most part limited to the case of M = Rn and often to 
small values of n, the structure and the deformation theory of homogeneous Poisson brackets of arbitrary 
degree k remains mostly unknown. The only general result, proved by Doyle [8], is that the connection ∇(0), 
associated with the coefficients of ul,kδ(x− y) in (1.1), is symmetric and flat.

The aim of this paper is to provide new insights on the structure of homogeneous Poisson brackets of 
arbitrary degree, laying the foundation to a sequence of works that we plan to devote to the study of their 
structure and deformations. A common approach in the study of the structure of such brackets for low k is 
to look for a special coordinate system in which the form of the brackets is particularly simple; for example, 
for general k, by writing them in the flat coordinates for the connection ∇(0). However, the use of special 
coordinates can obfuscate, rather than clarify, the geometric meaning of the equations. The philosophy of 
this work is therefore to study the structure of homogeneous Poisson brackets in an arbitrary coordinate 
system and for arbitrary k.

This work is organized as follows: in the next section we state our main theorem; in Section 3 we formulate 
an auxiliary cohomology problem which leads to the proof of our main result; in Section 4 we review the 
low-degree brackets in the light of our main theorem; in the last section we announce some results and list 
some open problems.

Remark 1. The structure of local homogeneous Poisson brackets has been thoroughly studied in low degree 
k ⩽ 3. Let us review the available literature. The ultralocal case k = 0 does not concern us here, since 
it does not involve any connection; it corresponds to the case of a Poisson structure on M , see [24]. The 
structure of the hydrodynamic type Poisson brackets is described in [9]. The case of degree k = 2 has been 
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studied in [26,27,8,24,15,16]. The degree k = 3 case has been investigated in [26--28,8,29,24,1,13,14]. The 
study of Poisson brackets of degree k = 1 with degenerate gij has been undertaken in [19,24], and treated 
for n = 2, 3 in [30].

Remark 2. The theory of local Poisson brackets considered in this paper allows for several extensions. If the 
coordinates u1, . . . , un are regarded as functions of several independent variables x1, . . . , xD we say that the 
Poisson bracket is multidimensional. This generalization was introduced in [10] and studied, for example, 
in [23,5]. Moreover, it is possible to study brackets defined by pseudodifferential operators, extending the 
theory to the non-local case, that has been considered for example in [25,12,6]. The homological algebra 
methods used in this paper have originally been applied to the computation of bihamiltonian cohomology 
groups [3,4] and Poisson cohomology groups in the multidimensional case [2].

2. Statement of the main theorem

Let M be a smooth n-dimensional manifold whose formal loop space is endowed with a homogeneous 
local Poisson bracket of degree k. More precisely, on a chart U with coordinates u1, . . . , un on M , the Poisson 
bracket is formally given by the expression

{ui(x), uj(y)} =
k∑︂

s=0 
P ij
s δ(s)(x− y) (2.1)

where P ij
s ∈ 𝒜k−s. We denote by 𝒜 the algebra of differential polynomials, which on U are given by formal 

power series in the variables ui,s with 1 ⩽ i ⩽ n, s ⩾ 1 with coefficients which are smooth functions of 
u1, . . . , un. The standard degree deg is defined on 𝒜 by assigning the degree s to the generators ui,s. We 
denote by 𝒜d the homogeneous component of standard degree d. The derivation ∂x on 𝒜 is given by

∂x =
∑︂
s⩾0 

ui,s+1 ∂

∂ui,s
, (2.2)

where we pose ui,0 = ui. Under coordinate transformations ũi = ũi(u), the formal transformation rule

{ũi(x), ũj(y)} = ∂ũi

∂ui′ (u(x)){ui′(x), uj′(y)} ∂ũj

∂uj′ (u(y)) (2.3)

is equivalent, using the usual identities for the derivatives of the Dirac delta function, to

P̃ ij
s =

∑︂
t⩾0 

(︃
s + t

s 

)︃
∂ũi

∂ui′ P
i′j′
s+t∂

t
x

(︃
∂ũj

∂uj′

)︃
. (2.4)

This equation should be understood as an identity between differential polynomials that induces the trans
formation rules for their coefficients. We name some coefficients by letting

{ui(x), uj(y)} = gij(u(x))δ(k)(x− y) +
k−1∑︂
s=0 

hij
(s)l(u(x))ul,k−s(x)δ(s)(x− y) + . . . (2.5)

where the dots denote higher order terms of degree two or more in the variables ui,s with s ⩾ 1, i = 1, . . . , n.
The coefficients gij define a (2, 0)-tensor g on M , with symmetry

gji = (−1)k+1gij .
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The skew-symmetry of the bracket (2.5) also implies the following constraints on the coefficients hij
(s)l

hij
(s)l =

k−1∑︂
t=0 

(−1)t+1
(︃
t 
s

)︃
hji

(t)l +
(︃
k

s 

)︃
∂gij

∂ul
(2.6)

for 0 ⩽ s ⩽ k − 1.
We assume that g is nondegenerate, thereby imposing that n is even for k even. The coefficients hij

(s)l are 
known to transform (up to a multiplicative constant) as contravariant Christoffel symbols; more precisely

Γl
(s)ij = −

(︃
k

s 

)︃−1

gii′h
i′l
(s)j (2.7)

transform as Christoffel symbols. They define k connections ∇(s) on the tangent bundle to M , i.e. maps

∇(s) : Γ(TM) → Ω1(TM) (2.8)

for s = 0, . . . , k − 1, where Ω1(TM) = Γ(T ∗M ⊗ TM). We call these the standard connections.
We define linear combinations with constant coefficients of the standard connections ∇(s) as follows

∇[s] =
s ∑︂

t=0 
cts∇(t) (2.9)

where s = 0, . . . , k − 1 and the constants are given by

cts = (−1)t
(︃
k + s− t

k

)︃(︃
k

t 

)︃
. (2.10)

Notice that these constants are nonzero only if t ⩽ s and t ⩽ k. Since for each fixed s the constants cts sum 
to one, the formula above defines connections ∇[0], . . . ,∇[k−1] on TM .

While it is known [8] that ∇(0) is flat, the remaining standard connections ∇(1), . . . ,∇(k−1) in general 
are not flat (see Remarks 16 and 18). Surprisingly, the flatness holds for all the connections ∇[s], as stated 
in our main result.

Main Theorem. The connections ∇[0], . . . ,∇[k−1] are flat.

The first few flat connections are:

∇[0] = ∇(0), (2.11)

∇[1] = −k∇(1) + (k + 1)∇(0), (2.12)

∇[2] = k(k − 1)
2 

∇(2) − k(k + 1)∇(1) + (k + 2)(k + 1)
2 

∇(0), (2.13)

... (2.14)

∇[k−1] = −(−1)kk∇(k−1) + · · · +
(︃

2k − 1
k

)︃
∇(0). (2.15)

Remark 3. We say that a degree k Poisson bracket is generic if the a�ine space spanned by the standard 
connections (or equivalently by the flat connections) is k − 1 dimensional, namely if they are in general 
position. The study of different types of degenerations could provide interesting families of Poisson brackets.
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3. Proof of the main theorem

The main difficulty in dealing with the constraints imposed by the Jacobi identity for arbitrary degree k is 
finding an appropriate way to disentangle the large family of associated differential equations, which, if dealt 
with directly, become unmanageable already for quite low k. Our strategy is to encode the Jacobi identity 
as d ◦ d = 0, where d is the adjoint action of the Poisson bivector P associated with the homogeneous 
Poisson bracket on the differential complex of local multivector fields. For our purposes, it is actually 
sufficient to consider the associated differential complex (𝒜, DP ) introduced by Liu and Zhang [20,21]. 
These computations also form the basis of our future work on the cohomology of homogeneous Poisson 
brackets.

Let us consider the algebra 𝒜 of formal power series in the even variables ui,s with 1 ⩽ i ⩽ n, s ⩾ 1 and 
in the odd variables θsi with 1 ⩽ i ⩽ n, s ⩾ 0 with coefficients which are smooth functions of the coordinates 
u1, . . . , un in a chart U on M . Clearly 𝒜 is a subalgebra of 𝒜 and the standard degree deg extends to 𝒜 by 
assigning degree s to the generators θsi . We denote by 𝒜d the homogeneous component of standard degree 
d. The derivation ∂x on 𝒜 is given by

∂x =
∑︂
s⩾0 

[︃
ui,s+1 ∂

∂ui,s
+ θs+1

i

∂

∂θsi

]︃
(3.1)

where we denote ui,0 = ui. The theta degree degθ on 𝒜 assigns degree one to the variables θsi and zero to the 
remaining generators. We denote by 𝒜p the homogeneous component of theta degree p and 𝒜p

d = 𝒜p ∩𝒜d. 
Define ℱ̂ = 𝒜/∂x𝒜 and denote 

∫︁
: 𝒜 → ℱ̂ the corresponding projection. The degrees defined above on 𝒜

induce corresponding degrees on ℱ̂ , and we denote the homogeneous components of ℱ̂ with the obvious 
upper and lower indices.

With the homogeneous local Poisson bracket of degree k ⩾ 1 defined by (2.1) we associate the following 
element P in ℱ̂2

k

P =
∫︂

P̃ , P̃ = 1
2

k∑︂
s=0 

P ij
s θiθ

s
j (3.2)

which in turn defines a superderivation of 𝒜

DP =
∑︂
s⩾0 

[︃
∂s
x

(︃
δP 
δθi

)︃
∂

∂ui,s
+ ∂s

x

(︃
δP 
δui

)︃
∂

∂θsi

]︃
, (3.3)

with degDP = k and degθ DP = 1. The variational derivatives are defined as

δP 
δui

=
∑︂
s⩾0 

(−∂x)s
∂P̃

∂ui,s
, 

δP 
δθi

=
∑︂
s⩾0 

(−∂x)s
∂P̃

∂θsi
. (3.4)

The operator DP defines a differential on the complex 𝒜.

Lemma 4 ([20,21]). The formula (3.3) defines a superderivation DP of 𝒜 which squares to zero, i.e.

DP ◦DP = 0. (3.5)

The previous equation encodes the differential equations appearing in the Jacobi identity for (2.1). To 
disentangle them we proceed to compute the cohomology of the complex (𝒜, DP ), using spectral sequences. 
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For a general introduction to this technique we refer for example to [22]. A quick review can be found in 
Section 3 of [3].

While the cohomology computations in general depend on the manifold M , in this context we are only 
interested in simplifying the operator DP , therefore it is sufficient to consider the algebra 𝒜 on a chart U
of M , that for simplicity we consider homeomorphic to a ball in Rn.

Let degu be the degree on 𝒜 defined by imposing that degu ui,s = 1 if s > 0, and that the degree of all 
other generators is zero. We denote by [.]p the projection to the homogeneous component of degu equal to 
p. Denoting some coefficients in P as in (2.5), we find the following preliminary formulas for some of their 
homogeneous components in degree degu.

Lemma 5. The following equations hold:

[P̃ ]0 = 1
2g

ijθiθ
k
j , (3.6)

[P̃ ]1 = 1
2

k−1∑︂
s=0 

hij
(s)lu

l,k−sθiθ
s
j , (3.7)

[︃
δP 
δθi

]︃
0

= gijθkj , (3.8)

[︃
δP 
δui

]︃
0

= 1
2
∂glj

∂ui
θlθ

k
j + 1

2

k−1∑︂
s=0 

(−1)k−shlj
(s)i∂

k−s
x

(︁
θlθ

s
j

)︁
. (3.9)

Proof. The first two are straightforward computations. For the third one observe that
[︃
δP 
δθi

]︃
0

=
[︃
δ[P̃ ]0
δθi

]︃
0
, (3.10)

while for the fourth one [︃
δP 
δui

]︃
0

=
[︃
δ[P̃ ]0
δui

]︃
0

+
[︃
δ[P̃ ]1
δui

]︃
0
, (3.11)

from which the above expressions easily follow. □
Let us decompose the differential DP = D−1+D0+. . . in homogeneous components of degree degu Ds = s.

Lemma 6. The lowest degree homogeneous component of DP is given by

D−1 =
∑︂
s⩾1 

gijθk+s
j

∂

∂ui,s
. (3.12)

Proof. Observe that

D−1 = [DP ]−1 =
∑︂
s⩾1 

[︃
∂s
x

(︃
δP 
δθi

)︃]︃
0

∂

∂ui,s
=

∑︂
s⩾1 

[︃
∂s
x

[︃
δP 
δθi

]︃
0

]︃
0

∂

∂ui,s
(3.13)

which, after substituting (3.8), gives the desired result. □
We consider on the complex (𝒜, DP ) the compatible descending filtration F𝒜 induced by the degree 

degu + degθ. More explicitly, F p𝒜q includes the monomials with degθ equal to q and degu bigger or equal to 
p−q. Therefore DP maps F p𝒜q to F p𝒜q+1. Let us denote by (Epq

r , dr)r⩾0 the associated spectral sequence.
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On the page zero of the spectral sequence

Epq
0 = F p𝒜p+q

F p+1𝒜p+q
≃ [𝒜p+q]−q (3.14)

the differential DP induces the differential d0 : Ep,q
0 → Ep,q+1

0 , which can be identified with D−1 acting on 
𝒜. Let us compute its cohomology.

Let ℬ̂ be the ring of polynomials in the odd variables θsi for 0 ⩽ s ⩽ k and 1 ⩽ i ⩽ n with coefficients 
given by smooth functions in the variables u1, . . . , un:

ℬ̂ = C∞(U) [{θsi , 0 ⩽ s ⩽ k, 1 ⩽ i ⩽ n}] . (3.15)

Let iℬ̂ : ℬ̂ ↪→ 𝒜 be the inclusion map and πℬ̂ : 𝒜 ↠ ℬ̂ the projection which sends to zero the generators 
ui,s and θs+k

i for s ⩾ 1, 1 ⩽ i ⩽ n. Clearly πℬ̂ ◦ iℬ̂ = 1ℬ̂, while iℬ̂ ◦ πℬ̂ is homotopic to the identity map 1𝒜. 
The cochain homotopy map h𝒜 is the usual one in de Rham theory, which in this case can be written as

h𝒜 = 1
l

∑︂
s⩾1 

ui,sgji
∂

∂θk+s
j

(3.16)

on monomials with the degree l ⩾ 1 in the generators ui,s and θs+k
i for s ⩾ 1, 1 ⩽ i ⩽ n, while h𝒜 is zero 

on monomials with degree l = 0. We have that

D−1 ◦ h𝒜 + h𝒜 ◦D−1 = 1𝒜 − iℬ̂ ◦ πℬ̂. (3.17)

We obtain the following formal Poincaré lemma.

Lemma 7. The cohomology H(𝒜, D−1) is isomorphic to ℬ̂.

Notice that the lemma follows essentially from the contractibility of the fibers of the jet space, with 
coordinates ui,s, s ⩾ 1, once we identify D−1 with a de Rham type operator.

The differential DP induces a differential d1 : Ep,q
1 → Ep+1,q

1 on the first page of the spectral sequence 
E1 ≃ ℬ̂. On ℬ̂ it is represented by

d1 = πℬ̂ ◦D0 ◦ iℬ̂. (3.18)

Removing the terms in DP that act on ui,s or on θk+s
i with s > 0 we obtain

d1 = πℬ̂ ◦
[︄
δP 
δθi

∂

∂ui
+

k∑︂
s=0 

∂s

(︃
δP 
δui

)︃
∂

∂θsi

]︄
0

◦ iℬ̂ (3.19)

= πℬ̂ ◦
(︄[︃

δP 
δθi

]︃
0

∂

∂ui
+

k∑︂
s=0 

[︃
∂s

(︃[︃
δP 
δui

]︃
0

)︃]︃
0

∂

∂θsi

)︄
◦ iℬ̂. (3.20)

By substitution of (3.8) and (3.9), we have the following:

Lemma 8. The first page E1 of the spectral sequence is isomorphic to the space ℬ̂ with differential

d1 = gijθkj
∂

∂ui
− 1

2
∂gij

∂ul
θkj

k∑︂
s=0 

θsi
∂

∂θsl
(3.21)
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+ 1
2

∑︂
0⩽s⩽r⩽k

[︄
k−1∑︂
t=0 

(−1)k−t

(︃
k + s− t

r

)︃
hij

(t)l

]︄
θri θ

k+s−r
j

∂

∂θsl
.

Remark 9. We introduce the notation

hij
(k)l = ∂gij

∂ul
, (3.22)

so that the formula (3.21) can be rewritten in the more compact form

d1 = gijθkj
∂

∂ui
+ 1

2
∑︂

0⩽s⩽r⩽k
0⩽t⩽k

(−1)k−t

(︃
k + s− t

r

)︃
hij

(t)lθ
r
i θ

k+s−r
j

∂

∂θsl
. (3.23)

To obtain the second page E2 of the spectral sequence we need to compute the cohomology of the complex 
(ℬ̂, d1).

Let us now consider the degree degθk on ℬ̂ defined by assigning degree one to the variables θk1 , . . . θkn and 
zero to the remaining ones. It turns out that the operator d1 is concentrated in degrees 0 and 1. We collect 
in the following lemma some observations about the form of d1.

Lemma 10. The operator d1 on ℬ̂ has only two homogeneous components

d1 = d
(1)
1 + d

(0)
1 , (3.24)

with degθk d
(s)
1 = s. The operator d(1)

1 can be written

d
(1)
1 = gijθkj

∂

∂ui
+ 1

2

k∑︂
t=0 

(−1)k−t

(︃
2k − t

k

)︃
hij

(t)lθ
k
i θ

k
j

∂

∂θkl
+

∑︂
0⩽s,t⩽k−1

(−1)k
(︃
k

t 

)︃−1

ctsh
ij
(t)lθ

k
i θ

s
j

∂

∂θsl
(3.25)

where

cts = (−1)t
(︃
k + s− t

k

)︃(︃
k

t 

)︃
. (3.26)

The constants cts, for 0 ⩽ s, t ⩽ k − 1, form a lower triangular matrix c, i.e. cts = 0 if s < t, and satisfy ∑︁k−1
t=0 cts = 1. The inverse c−1 is a lower triangular matrix given by

(c−1)ts = (−1)t
(︃
k

s 

)︃−1(︃
k + 1
s− t 

)︃
(3.27)

such that 
∑︁k−1

t=0 (c−1)ts = 1. The operator d(0)
1 is given by

d
(0)
1 = 1

2
∑︂

0⩽s<r<k

[︄
k−1∑︂
t=0 

(−1)k−t

(︃
k + s− t

r

)︃
hij

(t)l

]︄
θri θ

k+s−r
j

∂

∂θsl
. (3.28)

Proof. A straightforward computation gives the homogeneous component of degree zero (3.28), while for 
the homogeneous component of degree one we get:
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d
(1)
1 = gijθkj

∂

∂ui
− 1

2
∂gij

∂ul
θkj

k∑︂
s=0 

θsi
∂

∂θsl
(3.29)

+ 1
2

k−1∑︂
t=0 

(−1)k−t

(︃
2k − t

k

)︃
hij

(t)lθ
k
i θ

k
j

∂

∂θkl

+ 1
2

∑︂
0⩽s,t⩽k−1

(−1)k−t

[︃(︃
k + s− t

k

)︃
hij

(t)l −
(︃
k + s− t

s 

)︃
hji

(t)l

]︃
θki θ

s
j

∂

∂θsl
.

We can substitute (2.6) in the third line of (3.29), recalling that hij
(k)l is defined as in (3.22), to obtain

+1
2

∑︂
0⩽s,t⩽k−1

(−1)k−t

[︄(︃
k + s− t

k

)︃
hij

(t)l −
(︃
k + s− t

s 

)︃ k∑︂
r=0 

(−1)r+1
(︃
r

t 

)︃
hij

(r)l

]︄
θki θ

s
j

∂

∂θsl
. (3.30)

In this expression we can isolate the terms containing hij
(k)l, which are equal to

−1
2

∑︂
0⩽s⩽k−1

⎡
⎣ ∑︂

0⩽t⩽k−1

(−1)t+1
(︃
k + s− t

s 

)︃(︃
k

t 

)︃⎤⎦hij
(k)lθ

k
i θ

s
j

∂

∂θsl
. (3.31)

Thanks to the standard binomial identity (see Equation (5.25) in [18])

∑︂
k⩽l 

(−1)k
(︃
l − k

m 

)︃(︃
s 

k − n

)︃
= (−1)m+l

(︃
s−m− 1
l −m− n 

)︃
, (3.32)

we can easily see that

∑︂
0⩽t⩽k

(−1)t+1
(︃
k + s− t

s 

)︃(︃
k

t 

)︃
= 0. (3.33)

It follows that expression (3.31) combines with the last term in the first line of (3.29), giving a term which 
can be absorbed by the second line in (3.29) by extending the sum to t = k. Notice that such extra term is 
of the form hij

(k)lθ
k
i θ

k
j , hence it is vanishing for k odd for symmetry considerations. We have thus obtained 

equation (3.25) with

cts = 1
2(−1)t

(︃
k

t 

)︃[︄(︃
k + s− t

k

)︃
−

k−1∑︂
r=0 

(−1)r+1
(︃
k + s− r

s 

)︃(︃
t 
r

)︃]︄
. (3.34)

Finally let us prove that these constants can be written as in (3.26). Since t < k the sum in (3.34) can be 
extended to 0 ⩽ r ⩽ k + s. Then (3.26) follows from the identity (3.32) with k = r, l = k + s, m = s, s = t

and n = 0: first we obtain that the sum is equal to (−1)k
(︁
t−s−1

k

)︁
, which is equal to the first entry of the 

bracket in (3.34) by the following well-known identity

(︃
n

k

)︃
= (−1)k

(︃
k − n− 1

k

)︃
. (3.35)

The remaining properties of the coefficients cts can be easily proved from the standard identities of the 
binomial coefficients. □
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Since d1 squares to zero and it decomposes in two homogeneous components in degθk , we have

(︂
d
(1)
1

)︂2
= 0, d

(1)
1 d

(0)
1 + d

(0)
1 d

(1)
1 = 0, 

(︂
d
(0)
1

)︂2
= 0. (3.36)

Setting θki = gijdu
j , the ring ℬ̂ can be identified with the ring of polynomials in θsi with 0 ⩽ s < k and 

i = 1, . . . , n with coefficients which are exterior forms in the variables ui, namely

ℬ̂ ∼ = Ω(U) [{θsi , 0 ⩽ s ⩽ k − 1, 1 ⩽ i ⩽ n}] . (3.37)

Let us define

Γl
[s]ij :=

k−1∑︂
t=0 

ctsΓl
(t)ij . (3.38)

Under the above identification, we have that:

Lemma 11. The operator d(1)
1 acts on ℬ̂ as

d
(1)
1 = d +

k−1∑︂
s=0 

Γj
[s]ildu

iθsj
∂

∂θsl
(3.39)

where d is the standard exterior derivative in the coordinates ui, i = 1, . . . , n.

Proof. We have that d(1)
1 ui = gilθkl = dui and, since d(1)

1 squares to zero, d(1)
1 dui = 0. Therefore the first 

two terms in (3.25) are simply given by the exterior derivative d, while the last term can be rewritten as 
in (3.39) by substitution of (3.38) and (2.7). □

For a fixed s = 0, . . . , k−1, let ℰs be the trivial vector bundle over U with fiber the vector space spanned 
by θs1, . . . , θ

s
n. The space of ℰs-valued differential forms Ω(U, ℰs) is identified with the subspace ℬ̂s of ℬ̂ given 

by

ℬ̂s := Ω(U)⟨θs1, · · · , θsn⟩. (3.40)

The operator d(1)
1 defines a connection ∇[s] on the bundle ℰs, namely a map ∇[s] : Ωp(U, ℰs) →

Ωp+1(U, ℰs). Clearly ∇[s] squares to zero, i.e. it is a flat connection.
This concludes the proof of the main theorem. □

4. Poisson brackets of low degree

We investigate the consequences of our main theorem in low degree, comparing them with some well
known results in the literature.

The brackets of degree k = 0 are also called ultralocal Poisson brackets [24] and correspond to Poisson 
structures on the manifold M . They are not relevant to our discussion, so we will not review them here.

4.1. Poisson brackets of hydrodynamic type

The degree k = 1 Poisson brackets have the local form

{ui(x), uj(y)} = gijδ′(x− y) + bijl u
l
xδ(x− y) (4.1)
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where we assume that g is non-degenerate. The connection ∇(0) is defined by the Christoffel symbols

Γl
(0)ij = −gii′b

i′l
j . (4.2)

Our main theorem in this case just states that the connection ∇(0) is flat. As it is well-known from 
the complete description given by Dubrovin and Novikov in [9], the bracket (4.1) is Poisson if and only if 
the connection ∇(0) is flat, torsionless, and compatible with the metric g. Notice that, while the first two 
conditions are true for k ⩾ 1, the compatibility of ∇(0) with g does not hold in general. However, it can be 
proved from the skew-symmetry constraint that the connection obtained from ∇(k−1) by changing the sign 
of its torsion is compatible with g for k ⩾ 1. For k = 1 this gives the remaining constraint.

4.2. Poisson brackets of degree k = 2

The Poisson brackets of degree k = 2 in local coordinates have the form

{ui(x), uj(y)} = gijδ′′(x− y) + bijl u
l
xδ

′(x− y) + (cijl u
l
xx + cijlmul

xu
m
x )δ(x− y) (4.3)

where we assume that the bivector g is non-degenerate, therefore the dimension n of M is even. The 
Christoffel symbols of the standard connections are given by

Γl
(0)ij = −gii′c

i′l
j , Γl

(1)ij = −1
2gii

′bi
′l
j , (4.4)

and Γ[1] = 3Γ(0) − 2Γ(1), namely

Γl
[1]ij = gii′(bi

′l
j − 3ci

′l
j ). (4.5)

Our main theorem asserts that the connections ∇(0) and ∇[1] are flat.
Ferguson gives in [16] a complete set of equations for the skew-symmetry and Jacobi identity of the 

Poisson bracket. We recall this result in the following equivalent form.

Theorem 12 ([16]). For g non-degenerate, formula (4.3) defines a Poisson bracket if and only if

(a) gij is skew-symmetric,
(b) ∇(0) is flat and torsionless,
(c) ∇(0)

i gjl is skew-symmetric in i, j, l,
(d) ∇(0)

l gij = bijl − 2cijl ,
(e) cijql = cij(q,l) − gprc

ri
(qc

pj
l) .

Notice that the tensor appearing on the right-hand side of (d) is given by the difference of the flat 
connections

bijl − 2cijl = gir(Γj
[1]rl − Γj

(0)rl). (4.6)

The flatness of ∇[1] follows from Ferguson’s equations but was previously unnoticed.

Corollary 13. It follows from (a)-(d) that the connection ∇[1] is flat.

Proof. Notice that we can write ∇[1] = ∇(0) +A, where A is the tensor obtained from the difference of Γ[1]
and Γ(0) in (4.6), which from (d) of Theorem 12 reads
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Al
ij = gir∇(0)

j grl. (4.7)

Using (c), the same tensor can equivalently be written as

Al
ij = gls∇(0)

i gsj . (4.8)

By the flatness of ∇(0), we can compute the Riemann curvature of ∇[1] as

[∇[1]
i ,∇[1]

j ]st = ∇(0)
i As

jt + As
iqA

q
jt − (i ↔ j)

= ∇(0)
i

(︂
gsl∇(0)

j glt

)︂
+ gsp∇(0)

i gpqg
ql∇(0)

j glt − (i ↔ j)

= gsl∇(0)
i ∇(0)

j glt − (i ↔ j)

= gsl[∇(0)
i ,∇(0)

j ]glt = 0. □
Remark 14. The connections are in general position if ∇[1] and ∇(0) do not coincide, equivalently if bijl ̸= 2cijl . 
The degenerate case ∇[1] = ∇(0), namely bijl = 2cijl , has been also considered in [15] and corresponds to the 
case of covariantly constant g, which in turn is equivalent to the fact that g defines a Poisson tensor on M .

Remark 15. As it follows immediately from Ferguson’s equations, in the flat coordinates for ∇(0) the Poisson 
operator takes the canonical form

P ij = ∂gij∂ (4.9)

and, equivalently, the Poisson bracket is

{ui(x), uj(y)} = gijδ′′(x− y) + ∂lg
ijul

xδ
′(x− y) (4.10)

where ∂igjk is skew-symmetric in i, j, k, which in turn implies that gjk is linear in the flat coordinates u.

Remark 16. In flat coordinates the Christoffel symbols Γj
[1]rl and Γj

(0)rl differ by a factor −1/2, and since 

we know that ∇[1] is flat, as long as g is not constant, ∇(1) cannot be flat.

4.3. Poisson brackets of degree k = 3

The Poisson bracket in this case is usually written in local coordinates as

{ui(x), uj(y)} = gijδ′′′(x− y) + bijl u
l
xδ

′′(x− y) + (cijl u
l
xx + cijlmul

xu
m
x )δ′(x− y)

+ (dijl u
l
xxx + dijlmul

xxu
m
x + dijlmnu

l
xu

m
x un

x)δ(x− y). (4.11)

The non-degenerate matrix gij is symmetric and transforms as a contravariant tensor. The Christoffel 
symbols of the standard connections are given by

Γl
(0)ij = −gii′d

i′l
j , Γl

(1)ij = −1
3gii

′ci
′l
j , Γl

(2)ij = −1
3gii

′bi
′l
j . (4.12)

Our main theorem implies that the connections defined by the Christoffel symbols

Γl
[1]ij = gii′(ci

′l
j − 4di

′l
j ), Γl

[2]ij = gii′(−bi
′l
j + 4ci

′l
j − 10di

′l
j ), (4.13)
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and the connection ∇(0), are flat.
The full set of constraints coming from skew-symmetry and Jacobi identity written in an arbitrary 

coordinate system is not available in the literature. However, according to Potëmin [29], in flat coordinates 
for the connection ∇(0), the Poisson operator has the form

P ij = ∂
(︂
gij∂ + cijl u

l
x

)︂
∂ (4.14)

and the full set of constraints reduces to the following equations

gij,l = cijl + cjil , (4.15a)

giscjls = −gjscils , (4.15b)

0 = giscjls + gjsclis + glscijs , (4.15c)

glscijs,m = cils c
sj
m − clis c

sj
m − cljs g

si
,m. (4.15d)

We can read the coefficients in (4.11) by expanding (4.14) and comparing the two expressions. Besides 
gij and cijl which represent the same objects in the two formulas, we have

bijl = ∂gij

∂ul
+ cijl , cijlm = cij(l,m), (4.16)

while all the coefficients dijl , dijlm and dijlmp vanish.
The Christoffel symbols of the flat connections ∇[1] and ∇[2] are

Γl
[1]ij = gisc

sl
j , Γl

[2]ij = 2giscslj − gisc
ls
j . (4.17)

The flatness of the connection ∇[1] was proved by Balandin and Potëmin [1]. The flatness of the connection 
∇[2] was so far unnoticed, but it can be directly verified in these coordinates by quite long but straightforward 
computations using equations (4.15).

Remark 17. The connections are in general position if both bijl and cijl are non-zero and not proportional 
to each other, equivalently if ∇[1] and ∇[2] are not proportional and both non-zero. The non-generic cases 
are either the case of ∇[1] = ∇[2] non-vanishing, which corresponds to cijl symmetric in the upper indices, 
or the completely degenerate case, which corresponds to vanishing connections and constant gij.

Remark 18. Let us consider the degree k = 3 Poisson bracket in n = 2 dimensions considered in Theorem 
1 of [13] which is given by

(gij) =
(︄

1 u2

u1

u2

u1
1+(u2)2
(u1)2

)︄
, (cij1 ) =

⎛
⎝0 − u2

(u1)2

0 −1+(u2)2
(u1)3

⎞
⎠ , (cij2 ) =

(︄
0 1 

u1

0 u2

(u1)2

)︄
.

Computing the curvature tensors of the connections ∇(1) and ∇(2) we obtain

R
(1)2
2,1,1 = −R

(1)2
1,2,1 = 4 

9(u1)2 , (4.18)

R
(2)1
1,2,1 = −R

(2)1
2,1,1 = R

(2)2
2,1,2 = −R

(2)2
1,2,2 = 8u2

9u1 (4.19)

R
(2)2
1,2,1 = −R

(2)2
2,1,1 = 4(2(u2)2 − 3)

9(u1)2 , (4.20)
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R
(2)1
2,1,2 = −R

(2)1
1,2,2 = 8

9 , (4.21)

while all the other components are vanishing. This shows that in general the standard connections ∇(1)

and ∇(2) have non-vanishing curvature. Notice that in these coordinates the Christoffel symbols Γl
[1]ij are 

proportional to Γl
(1)ij : one can indeed check that, by rescaling the latter in the previous computation by 

the coefficient −1/3, the curvature vanishes.

4.4. Poisson brackets of degree k = 4

The form of the Poisson bracket in local coordinates is

{ui(x), uj(y)} = gijδ′′′′(x− y) + bijl u
l
xδ

′′′(x− y) + (cijl u
l
xx + cijlmul

xu
m
x )δ′′(x− y)

+ (dijl u
l
xxx + dijlmul

xxu
m
x + dijlmpu

l
xu

m
x up

x)δ′(x− y)

+ (eijl u
l
xxxx + eijlmul

xxxu
m
x + êijlmul

xxu
m
xx + eijlmpu

l
xxu

m
x up

x

+ eijlmpqu
l
xu

m
x up

xu
q
x)δ(x− y). (4.22)

The matrix gij is skew-symmetric and defines a bivector on the manifold M . We assume that gij is non
degenerate, and therefore that the dimension n of M is even.

The Christoffel symbols of the standard connections are given by

Γl
(0)ij = −gii′e

i′l
j , Γl

(1)ij = −1
4gii

′di
′l
j , (4.23)

Γl
(2)ij = −1

6gii
′ci

′l
j , Γl

(3)ij = −1
4gii

′bi
′l
j . (4.24)

Our main theorem implies that the connections defined by the Christoffel symbols

Γl
[1]ij = gii′(di

′l
j − 5ei

′l
j ), (4.25)

Γl
[2]ij = gii′(−ci

′l
j + 5di

′l
j − 15ei

′l
j ), (4.26)

Γl
[3]ij = gii′(bi

′l
j − 5ci

′l
j + 15di

′l
j − 35ei

′l
j ), (4.27)

are flat.
We are not aware of any result in the literature about the homogeneous Poisson brackets of degree k = 4.

5. Conclusions

The aim of this work is to address the general problem of the study of the structure and deformations of 
homogeneous local Poisson brackets of arbitrary degree as geometric objects on a manifold M , as originally 
posed by Dubrovin and Novikov. By leveraging homological algebra techniques, we set the stage for a 
systematic investigation of the structure and cohomology of such brackets, with the aim of generalizing 
well-known results in low degree (for the hydrodynamic case k = 1, where these problems are completely 
solved, at least in the case of invertible g, see [9,11,17,7]).

Our main result is the proof that specific linear combinations of the k standard connections associated 
with a homogeneous Poisson bracket of degree k have vanishing curvature. We observe moreover how this 
was mostly unnoticed in the previous studies of low degree brackets.

This result appears as a side product of the first steps in the computation of the Poisson cohomology of 
the homogeneous Poisson brackets. Indeed, we plan to extend this analysis in a subsequent work, where we 
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compute the Poisson cohomology of a homogeneous Poisson bracket P in terms of the Chevalley-Eilenberg 
cohomology of a Lie algebra naturally associated with P . However, a more direct proof of the flatness of the 
connections ∇[s] remains an intriguing challenge. Such a proof could possibly shed light on the geometric 
origins of the coefficients defining the flat connections.

We deem that achieving a complete geometric characterization of the constraints imposed by skew
symmetry and the Jacobi identity could significantly advance the classification of homogeneous Poisson 
brackets. There are some further directions of study of the structure problem that could be pursued. The 
skew-symmetry constraint of the Poisson bracket has been used in this work (see proof of Lemma 10) but 
its full interpretation is lacking. Other properties, like the symmetry of ∇(0), are known [8] to hold for 
arbitrary degree but their proof escapes the methods used in this paper. The nature of ``deeper'' coefficients, 
those appearing at higher degree degu in the brackets, is still not clear. Finally, relaxing the assumption of 
invertibility of g, especially for even degrees k, could expand the scope of the theory to include degenerate 
cases, potentially uncovering new structural phenomena.
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